Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (138)

Search Parameters:
Keywords = culture media formulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 801 KB  
Article
Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators
by Mahboubeh Davoudi Pahnekolayi, Zahra Parchianloo, Majid Babouyehdarabi and Meysam Ghasemi
Plants 2025, 14(16), 2606; https://doi.org/10.3390/plants14162606 - 21 Aug 2025
Viewed by 348
Abstract
Rosa canina is one of the precious native rose rootstocks with a high reputation among plant producers, which has potential horticultural and pharmacological properties related to the cosmetic values and the production of secondary metabolites. Due to high horticultural consumption, applying the plant [...] Read more.
Rosa canina is one of the precious native rose rootstocks with a high reputation among plant producers, which has potential horticultural and pharmacological properties related to the cosmetic values and the production of secondary metabolites. Due to high horticultural consumption, applying the plant tissue culture technique as a major tool for healthy and massive-scale production of R. canina plants is not unexpected. However, the response of R. canina in vitro plantlets to various plant tissue culture ingredients is not well understood to tender an efficient applied protocol for qualitative and quantitative in vitro propagation. In this regard, the main objective of this study is to investigate the influence of several abiotic in vitro variants including six plant tissue culture media formulations (McCown’s Woody Plant Medium (WPM), Murashige and Skoog (MS), Van der Salm (VS), Schenk and Hildebrant (SH), Driver Kuniyuki Walnut (DKW), and Gamburg B5 (B5)) in combination with four concentrations (0, 1.5, 3, 4 mgL−1) of two types of cytokinins (6-Benzyaminopurine (BAP) and Kinetin (Kin)) simultaneously. Notably, it is perceived that DKW culture medium containing 1.5 mgL−1 BAP and 0.1 mgL−1 NAA is the best treatment for both in vitro morphological and flowering properties. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration—2nd Edition)
Show Figures

Figure 1

27 pages, 2080 KB  
Review
Patient-Derived Organoid Biobanks for Translational Research and Precision Medicine: Challenges and Future Perspectives
by Floriana Jessica Di Paola, Giulia Calafato, Pier Paolo Piccaluga, Giovanni Tallini and Kerry Jane Rhoden
J. Pers. Med. 2025, 15(8), 394; https://doi.org/10.3390/jpm15080394 - 21 Aug 2025
Viewed by 273
Abstract
Over the past decade, patient-derived organoids (PDOs) have emerged as powerful in vitro models that closely recapitulate the histological, genetic, and functional features of their parental primary tissues, representing a ground-breaking tool for cancer research and precision medicine. This advancement has led to [...] Read more.
Over the past decade, patient-derived organoids (PDOs) have emerged as powerful in vitro models that closely recapitulate the histological, genetic, and functional features of their parental primary tissues, representing a ground-breaking tool for cancer research and precision medicine. This advancement has led to the development of living PDO biobanks, collections of organoids derived from a wide range of tumor types and patient populations, which serve as essential platforms for drug screening, biomarker discovery, and functional genomics. The classification and global distribution of these biobanks reflect a growing international effort to standardize protocols and broaden accessibility, supporting both basic and translational research. While their relevance to personalized medicine is increasingly recognized, the establishment and maintenance of PDO biobanks remain technically demanding, particularly in terms of optimizing long-term culture conditions, preserving sample viability, and mimicking the tumor microenvironment. In this context, this review provides an overview of the classification and worldwide distribution of tumor and paired healthy tissue-specific PDO biobanks, explores their translational applications, highlights recent advances in culture systems and media formulations, and discusses current challenges and future perspectives for their integration into clinical practice. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
Show Figures

Figure 1

21 pages, 3050 KB  
Article
Cosmetic Upgrade of EGF: Genetically Modified Probiotic-Derived Cell-Free Supernatants Containing Human EGF Protein Exhibit Diverse Biological Activities
by Jun Young Ahn, Seungwoo Kim, Jaewon Ha, Yoon Jin Roh, Yongku Ryu, Myung Jun Chung, Kui Young Park and Byung Chull An
Cosmetics 2025, 12(4), 176; https://doi.org/10.3390/cosmetics12040176 - 19 Aug 2025
Viewed by 345
Abstract
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which [...] Read more.
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which can secrete EGF protein in growth media, thereby producing probiotic-derived PP-EGF culture medium supernatant (PP-EGF-SUP). Even at low EGF concentrations, PP-EGF-SUP exhibited EGF activities, such as cell scratch wound healing, tyrosinase inhibition, and improvements in anti-wrinkle factors, similar to or stronger than those of recombinant human EGF (rhEGF), which was used as a positive control. PP-EGF-SUP exhibited strong additional biological activities, such as antioxidant, anti-inflammatory, and anti-microbial activities, even though rhEGF did not have such properties. PP-EGF-SUP could be easily transformed to PP-EGF-SUP dried powder (PP-EGF-DP) using the freeze-drying method, and it could also be well resolved in water up to 20 mg/mL; furthermore, it still maintained its bioactivity after the manufacturing process. To determine melasma improvement efficacy, a human application test was performed using melasma ampoules containing 1% or 5% PP-EGF-DP formulations for four weeks. When comparing the melasma values before and after treatment, it was found that the light melasma value statistically decreased by 3.38% and 3.79% and that the dark melasma value statistically decreased by 1.74% and 2.93% in the test groups applying the 1% and 5% PP-EGF-DP melasma ampoules, respectively. In addition, the melasma area also decreased by 21.21% and 29.1%, while the control group showed no statistical difference. During the study period, no significant adverse skin reactions were observed due to the application of the PP-EGF-DP melasma ampoule. In conclusion, PP-EGF-DP may offer unique advantages in the cosmetic ingredient market, such as safety (as a probiotic derivative), stability (postbiotics protect EGF activity), and diverse bioactivities (activity potentiation and postbiotic-derived biological activities). Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

15 pages, 6009 KB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 331
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

19 pages, 5882 KB  
Article
Targeted Redesign and Optimization of Culture Media for Ethylene Glycol Biosynthesis in Komagataella phaffii
by Thályta Fraga Pacheco and João Ricardo Moreira de Almeida
Fermentation 2025, 11(8), 424; https://doi.org/10.3390/fermentation11080424 - 23 Jul 2025
Viewed by 462
Abstract
Tailoring culture media and supplementation strategies to the specific requirements of a target product is essential for enhancing microbial production efficiency. This work addresses an unexplored aspect of K. phaffii cultivation: optimizing culture media for metabolite production from xylose, diverging from the conventional [...] Read more.
Tailoring culture media and supplementation strategies to the specific requirements of a target product is essential for enhancing microbial production efficiency. This work addresses an unexplored aspect of K. phaffii cultivation: optimizing culture media for metabolite production from xylose, diverging from the conventional focus on recombinant protein expression and the use of glycerol or methanol as primary substrates. Ethylene glycol biosynthesis in an engineered K. phaffii strain was improved by evaluating media and nutrient supplementation. Among the seven evaluated formulations, FM22 and d’Anjou were the most effective, with inositol and thiamine dichloride playing key roles in enhancing production. Salt concentrations in both media were optimized using Central Composite Design (CCD), reducing complexity while increasing yields. Ethylene glycol production increased by 54% in FM22 and 21% in d’Anjou, accompanied by a threefold and 26% reduction in the total salt content, respectively. The vitamin solution was streamlined from seven to two components, each at half the standard concentration. Trace element solutions were reduced to 25% of the original volume without compromising productivity. These findings underscore the dual benefit of culture medium optimization: improved ethylene glycol yields and simplified formulations, establishing a foundation for the development of more efficient and cost-effective bioprocesses using K. phaffii. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

26 pages, 3044 KB  
Article
Optimization of YF17D-Vectored Zika Vaccine Production by Employing Small-Molecule Viral Sensitizers to Enhance Yields
by Sven Göbel, Tilia Zinnecker, Ingo Jordan, Volker Sandig, Andrea Vervoort, Jondavid de Jong, Jean-Simon Diallo, Peter Satzer, Manfred Satzer, Kai Dallmeier, Udo Reichl and Yvonne Genzel
Vaccines 2025, 13(7), 757; https://doi.org/10.3390/vaccines13070757 - 16 Jul 2025
Viewed by 1002
Abstract
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised [...] Read more.
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised in antiviral pathways, the redundancy of innate signaling complicates host cell optimization by genetic engineering. Small molecules that are hypothesized to target antiviral pathways (Viral Sensitizers, VSEs) added to the culture media offer a versatile alternative to genetic modifications to increase permissiveness and, thus, viral yields across multiple cell lines. Methods: To explore how the yield for a chimeric Zika vaccine candidate (YF-ZIK) could be further be increased in an intensified bioprocess, we used spin tubes or an Ambr15 high-throughput microbioreactor system as scale-down models to optimize the dosing for eight VSEs in three host cell lines (AGE1.CR.pIX, BHK-21, and HEK293-F) based on their tolerability. Results: Addition of VSEs to an already optimized infection process significantly increased infectious titers by up to sevenfold for all three cell lines tested. The development of multi-component VSE formulations using a design of experiments approach allowed further synergistic titer increases in AGE1.CR.pIX cells. Scale-up to 1 L stirred-tank bioreactors and 3D-printed mimics of 200 or 2000 L reactors resulted in up to threefold and eightfold increases, respectively. Conclusions: Addition of single VSEs or combinations thereof allowed a further increase in YF-ZIK titers beyond the yield of an already optimized, highly intensified process. The described approach validates the use of VSEs and can be instructive for optimizing other virus production processes. Full article
Show Figures

Graphical abstract

22 pages, 3129 KB  
Article
Characterizing the Impact of Fabrication Methods on Mechanically Tunable Gelatin Hydrogels for Cardiac Fibrosis Studies
by Jordyn Folh, Phan Linh Dan Tran and Renita E. Horton
Bioengineering 2025, 12(7), 759; https://doi.org/10.3390/bioengineering12070759 - 13 Jul 2025
Viewed by 569
Abstract
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase [...] Read more.
The mechanical properties of the extracellular matrix critically influence cell behavior in both physiological and pathophysiological states, including cardiac fibrosis. In vitro models have played a critical role in assessing biological mechanisms. In this study, we characterized mechanically tunable enzymatically crosslinked gelatin-microbial transglutaminase (mTG) hydrogels for modeling cardiovascular diseases. Gelatin hydrogels were fabricated via direct mixing or immersion crosslinking methods. Hydrogel formulations were assessed using the Piuma nanoindenter and Instron systems. This study investigates the effects of fabrication methods, UV ozone (UVO) sterilization, crosslinking methods, and incubation media on hydrogel stiffness. Further, this study examined the response of murine cardiac fibroblasts to hydrogel stiffness. The hydrogels exhibited modulus ranges relevant to both healthy and fibrotic cardiac tissues. UVO exposure led to slight decreases in hydrogel modulus, while the fabrication method had a significant impact on the modulus. Hydrogels incubated in phosphate buffered saline (PBS) were stiffer than those incubated in Medium 199 (M199), which correlated with lower pH in PBS. Fibroblasts cultured on stiffer hydrogels display enhanced smooth muscle actin (SMA) expression, suggesting sensitivity to material stiffness. These findings highlight how fabrication parameters influence the modulus of gelatin-mTG hydrogels for cardiac tissue models. Full article
Show Figures

Graphical abstract

19 pages, 2810 KB  
Article
In Vitro Assessment of a Doubly Adjuvanted Self-Emulsified Nanoemulsion as a Delivery Vehicle for Antigenic Proteins
by Evgenia Tsanaktsidou, Maritsa Margaroni, Evdokia Karagouni, Costas Kiparissides and Olga Kammona
Pharmaceutics 2025, 17(7), 870; https://doi.org/10.3390/pharmaceutics17070870 - 2 Jul 2025
Viewed by 2523
Abstract
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides [...] Read more.
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides (LeishPts) encapsulated in doubly adjuvanted self-nanoemulsifying drug delivery systems (ST-SNEDDSs), this study aims to assess ST-SNEDDS-based nanoemulsions as vehicles for the delivery of antigenic proteins. Methods: Model antigens (e.g., BSA-FITC, OVA) were encapsulated in ST-SNEDDS after being complexed with the cationic phospholipid dimyristoyl phosphatidylglycerol (DMPG) via hydrophobic ion pairing. The nanoemulsions were characterized with respect to droplet diameter, zeta potential, stability, protein loading, protein release from the nanodroplets in different release media and cell uptake. Results: Both model antigens exhibited high encapsulation efficiency (>95%) and their release from the nanodroplets was shown to be strongly affected by the type of release medium (e.g., PBS, FBS 10% v/v) and the ratio of its volume to that of the oily phase, in agreement with predictions of protein release. Protein-loaded nanoemulsion droplets labeled with Cy-5 were found to be efficiently taken up by macrophages (J774A.1) in vitro. However, no colocalization of the labeled nanodroplets and BSA-FITC could be observed. Conclusions: It was revealed that in contrast with LeishPts, whole protein molecules may not be appropriate antigenic cargo for ST-SNEDDS formulations due to the rapid protein release from the nanodroplets in release media simulating in vitro culture and in vivo conditions such as FBS 10% v/v. Full article
Show Figures

Graphical abstract

26 pages, 12914 KB  
Article
Copy/Past: A Hauntological Approach to the Digital Replication of Destroyed Monuments
by Giovanni Lovisetto
Heritage 2025, 8(7), 255; https://doi.org/10.3390/heritage8070255 - 27 Jun 2025
Viewed by 1099
Abstract
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation [...] Read more.
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation of hauntology and Umberto Eco’s theory of forgery, this study examines the ontological, ethical, and ideological stakes of digitally mediated replication. Rather than treating digital and physical ‘copies’ as straightforward reproductions of ancient ‘originals’, the essay reframes them as specters: material re-appearances haunted by loss, technological mediation, and political discourses. Through a close analysis of production methods, rhetorical framings, media coverage, and public reception, it argues that presenting such ‘replicas’ as faithful restorations or acts of cultural resurrection collapses a hauntological relationship into a false ontology. The article thus shows how, by concealing the intermediary, spectral role of digital modeling, such framings enable the symbolic use of these ‘replicas’ as instruments of Western technological triumphalism and digital colonialism. This research calls for a critical approach that recognizes the ontological peculiarities of such replicas, foregrounds their reliance on interpretive rather than purely mechanical processes, and acknowledges the ideological weight they carry. Full article
(This article belongs to the Special Issue Past for the Future: Digital Pathways in Cultural Heritage)
Show Figures

Figure 1

23 pages, 3181 KB  
Article
Side-by-Side Comparison of Culture Media Uncovers Phenotypic and Functional Differences in Primary Mouse Aortic Mural Cells
by Iman Ghasemi, Rajinikanth Gogiraju, Sana’a Khraisat, Sven Pagel, Claudine Graf, Moritz Brandt, Thati Madhusudhan, Philip Wenzel, Guillermo Luxán, Philipp Lurz, Magdalena L. Bochenek and Katrin Schäfer
Cells 2025, 14(12), 927; https://doi.org/10.3390/cells14120927 - 19 Jun 2025
Viewed by 548
Abstract
(1) Background: Vascular mural cells reside in the media and outer layers of the vessel wall. Their ability to proliferate and migrate or to change phenotype in response to external cues is a central feature of the vascular response to injury. Genetically engineered [...] Read more.
(1) Background: Vascular mural cells reside in the media and outer layers of the vessel wall. Their ability to proliferate and migrate or to change phenotype in response to external cues is a central feature of the vascular response to injury. Genetically engineered mice are used for loss- or gain-of-function analyses or lineage tracing in vivo, their primary cells for mechanistic studies in vitro. Whether and how cultivation conditions affect their phenotype and function is often overlooked. (2) Methods: Here, we systematically studied how the cultivation of primary mural cells isolated from the aorta of adult wild-type mice in either basal medium (DMEM) or special media formulated for the cultivation of fibroblasts or pericytes affects their phenotype and function. (3) Results: Medium composition did not alter cell viability, but the mRNA levels of differentiated smooth muscle cell markers were highest in vascular mural cells expanded in DMEM. Conversely, significantly higher numbers of proliferating and migrating cells were observed in cells expanded in Pericyte medium, and cytoskeletal rearrangements supported increased migratory capacities. Significantly reduced telomere lengths and metabolic reprogramming was observed in aortic mural cells cultured in Fibroblast medium. (4) Conclusions: Our findings underline the plasticity of primary aortic mural cells and highlight the importance of the culture media composition during their expansion, which could be exploited to interrogate their responsiveness to external stimuli or conditions observed in vivo or in patients. Full article
Show Figures

Figure 1

21 pages, 1735 KB  
Review
Immunomodulatory Potential and Biocompatibility of Chitosan–Hydroxyapatite Biocomposites for Tissue Engineering
by Davide Frumento and Ștefan Țălu
J. Compos. Sci. 2025, 9(6), 305; https://doi.org/10.3390/jcs9060305 - 17 Jun 2025
Cited by 3 | Viewed by 954
Abstract
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red [...] Read more.
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red Uptake assays, and minimal cytotoxicity, as demonstrated by low levels of cell death in DAPI and Trypan blue staining. More importantly, CS-HAp biocomposites modulate the immune environment by enhancing the expression of anti-inflammatory cytokines (IL-10 and IL-4) and the pro-inflammatory cytokine TGF-β, while avoiding significant increases in TNF-α, IL-6, or NF-κB expression in fibroblast cells exposed to HAC and HACF scaffolds. In an in vivo dermatitis model, these biocomposites reduced mast cell counts and plasma histamine levels and significantly decreased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), JAK1/3, VEGF, and AnxA1 levels. Structurally, HACF scaffolds demonstrated larger average pore sizes (95 µm) compared to HAC scaffolds (74 µm), with porosities of 77.37 ± 2.4% and 65.26 ± 3.1%, respectively. These materials exhibited high swelling ability, equilibrium water content, and controlled degradation over a week in culture media. In addition to their immunomodulatory effects, CS-HAp composites promote essential cellular activities, such as attachment, proliferation, and differentiation, thereby supporting tissue integration and healing. Despite these promising findings, significant gaps remain in understanding the underlying mechanisms of immune modulation by CS-HAp biocomposites, and formulation-dependent variability raises concerns about reproducibility and clinical application. Therefore, a comprehensive review is essential to consolidate existing data, identify key knowledge gaps, and standardize the design of CS/HAp composites for broader clinical use, particularly in immunomodulatory and regenerative medicine contexts. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

17 pages, 4881 KB  
Article
Functionalization-Dependent Cytotoxicity of Silver Nanoparticles: A Comparative Study of Chlorhexidine and Metronidazole Conjugates
by Karol P. Steckiewicz, Monika Dmochowska, Elżbieta Megiel, Ewelina Barcińska and Iwona Inkielewicz-Stępniak
Biomolecules 2025, 15(6), 850; https://doi.org/10.3390/biom15060850 - 10 Jun 2025
Viewed by 866
Abstract
This study examines the cytotoxicity of two silver nanoparticle formulations—AgNPs conjugated with chlorhexidine (AgNPs-CHL) and AgNPs conjugated with polyethylene glycol and metronidazole (AgNPs-PEG-MET)—as examples of the surface functionalization of silver nanoparticles with drugs via sulfur–silver bonds and nitrogen–silver interactions. We previously reported the [...] Read more.
This study examines the cytotoxicity of two silver nanoparticle formulations—AgNPs conjugated with chlorhexidine (AgNPs-CHL) and AgNPs conjugated with polyethylene glycol and metronidazole (AgNPs-PEG-MET)—as examples of the surface functionalization of silver nanoparticles with drugs via sulfur–silver bonds and nitrogen–silver interactions. We previously reported the synthesis of these NPs and their efficiency in periodontitis treatment. Here, we analyze the relationships between the cytotoxic mechanisms of AgNPs and their surface chemistry. UV–Vis spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) were used for physicochemical studies of the conjugates in two environments: aqueous solutions and commonly used cell culture media. Cytotoxicity was assessed in human fetal osteoblasts (hFOB 1.19) and human gingival fibroblasts (HGF-1) through BrdU and LDH assays, ROS detection, cell cycle analysis, apoptosis assays, and protein expression studies. AgNPs-CHL showed aggregation and increased hydrodynamic diameters in the culture medium, while AgNPs-PEG-MET remained stable. Both exhibited concentration-dependent cytotoxicity: AgNPs-CHL at 0.4–10 μg/mL and AgNPs-PEG-MET at 0.75–10 μg/mL. AgNPs-CHL, in which silver surface functionalization was realized via nitrogen–silver interactions, induced significant ROS generation, LDH release, and necroptosis, marked by increased RIP1, RIP3, and MLKL proteins. In the case of AgNPs-PEG-MET, where sulfur–silver bonds combined the drug via a PEG linker, they triggered apoptosis, as evidenced by elevated caspase-2 levels and flow cytometry. These findings highlight that the type of surface functionalization of silver nanoparticles significantly influences their physicochemical behavior and biological effects. Understanding these mechanisms is crucial in designing safer, more effective nanoparticle-based therapies for periodontal and other inflammatory conditions. Full article
(This article belongs to the Special Issue Metallic Nanoparticles: Biosynthesis and Therapeutic Potential)
Show Figures

Figure 1

14 pages, 1495 KB  
Article
Assessment of Oral Microbial Viability by 2,6-Dichlorophenolindophenol a Redox Agent
by Prem K. Sreenivasan and Violet I. Haraszthy
Antibiotics 2025, 14(6), 590; https://doi.org/10.3390/antibiotics14060590 - 7 Jun 2025
Viewed by 836
Abstract
Background/Objectives: This investigation evaluated 2,6-Dichlorophenolindophenol (DCIP), a redox dye, as a colorimetric reagent for rapid quantification of oral bacteria and examined the antimicrobial effects of oral hygiene formulations. Methods/Results: Viable microbial cells reduce DCIP, resulting in a loss of its blue color which [...] Read more.
Background/Objectives: This investigation evaluated 2,6-Dichlorophenolindophenol (DCIP), a redox dye, as a colorimetric reagent for rapid quantification of oral bacteria and examined the antimicrobial effects of oral hygiene formulations. Methods/Results: Viable microbial cells reduce DCIP, resulting in a loss of its blue color which can be measured spectrophotometrically. Strains of Actinomyces viscosus, Veillonella atypica, Aggregatibacter actinomycetemcomitans, Streptococcus mutans and Candida albicans grown in the laboratory reduced DCIP. Significant correlations between increasing viable plate counts and DCIP reduction were noted for strains of oral organisms. Intact microbial cells reduced DCIP, with insignificant reductions observed by spent microbial media or bacteria free culture media. Organisms inactivated by either heat or cold demonstrated significantly lower DCIP reduction in comparison to metabolically intact organisms grown under optimal conditions. Conclusions: DCIP reduction provided a rapid and accurate method to evaluate antimicrobial effects of clinical proven mouthwashes formulated with cetylpyridinium chloride or chlorhexidine and toothpastes for a range of oral bacteria. Together, these results identify a rapid, low-cost method using common laboratory equipment to enumerate oral organisms with a visual outcome. Full article
Show Figures

Figure 1

17 pages, 1014 KB  
Article
Design of a Novel DNA-FISH Probe for the Rapid Identification of Candida albicans in Cosmetic Products
by Patrícia Branco, Margarida Nunes, Paula Pereira and Elisabete Muchagato Mauricio
Cosmetics 2025, 12(3), 115; https://doi.org/10.3390/cosmetics12030115 - 3 Jun 2025
Cited by 1 | Viewed by 908
Abstract
Microbiological quality control in cosmetic and pharmaceutical products is crucial for consumer safety. Traditional culture-based detection methods, such as plating on selective media, are time-consuming and may lack sensitivity. Fluorescence In Situ Hybridisation (FISH), a molecular and culture-independent technique, enables rapid and precise [...] Read more.
Microbiological quality control in cosmetic and pharmaceutical products is crucial for consumer safety. Traditional culture-based detection methods, such as plating on selective media, are time-consuming and may lack sensitivity. Fluorescence In Situ Hybridisation (FISH), a molecular and culture-independent technique, enables rapid and precise microbial identification by targeting specific RNA or DNA sequences with fluorescent probes. In this study, a novel DNA-FISH probe was developed for the detection of Candida albicans in cosmetic formulations. The probe’s specificity was assessed in silico and experimentally using flow cytometry (flow-FISH) on C. albicans and non-target microorganisms, including Pichia kudriavzevii, commonly known as Candida krusei, Saccharomyces cerevisiae, Wickerhamomyces anomalus, Escherichia coli, and Staphylococcus aureus. The probe exhibited 98.9% hybridization efficiency with C. albicans, yielding a fluorescence intensity (FI) of 25,000 (a.u.), while non-target yeasts demonstrated minimal hybridization (4.7%, 2.3%, and 1.9% for C. krusei, S. cerevisiae, and W. anomalus, respectively) and bacteria showed negligible FI. Additionally, the probe’s applicability was evaluated in a tonic formulation, where C. albicans’ hybridization efficiency was slightly reduced to 88.4%, suggesting that formulation components may influence probe performance. Nevertheless, the probe maintained high specificity and efficiency without formamide, a toxic reagent commonly used in FISH. These findings highlight the potential of FISH probes for rapid, accurate, and safe microbial detection, offering a valuable tool for microbiological quality control in the cosmetics industry. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

13 pages, 2022 KB  
Article
Evaluating the Biocontrol Potential of Bacillus subtilis Spores Against Listeria monocytogenes in Tryptic Soy Broth and Hummus
by Abisha Dhital, Xin Mei Teng, Jessie Payne and Ravi Jadeja
Appl. Microbiol. 2025, 5(2), 47; https://doi.org/10.3390/applmicrobiol5020047 - 15 May 2025
Viewed by 1105
Abstract
This study evaluated the antimicrobial potential of a Bacillus subtilis spore-based probiotic cocktail to reduce foodborne pathogens in both nutrient-rich laboratory media and a complex food matrix (hummus). Three common foodborne pathogens—Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium—were cultured individually [...] Read more.
This study evaluated the antimicrobial potential of a Bacillus subtilis spore-based probiotic cocktail to reduce foodborne pathogens in both nutrient-rich laboratory media and a complex food matrix (hummus). Three common foodborne pathogens—Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium—were cultured individually in full-strength, half-strength, and quarter-strength tryptic soy broth (TSB) with or without the probiotic spores (~7 log CFU/mL). Additionally, a commercial hummus formulation was inoculated with L. monocytogenes (~3 log CFU/g) and B. subtilis spores (~7 log CFU/g) and stored at 30 °C to simulate temperature abuse. In TSB, E. coli and Salmonella grew to ~8.2 log CFU/mL in full-strength media, with no significant inhibition by the probiotics. However, L. monocytogenes showed substantial suppression: in nutrient-limited TSB, viable counts dropped below the detection limit of 1.48 log CFU/mL by 24 h in the presence of probiotics. In hummus, L. monocytogenes grew to an average of 8.22 log CFU/g in the absence of probiotics but remained significantly lower at an average of 5.03 log CFU/g when co-inoculated with B. subtilis (p < 0.05). Germination of probiotic spores was confirmed within 6 h under all conditions. These findings suggest that B. subtilis spores selectively inhibit Listeria, particularly under nutrient stress or abuse conditions. While the probiotic had limited impact on Gram-negative pathogens, its application may serve as a clean-label strategy for suppressing L. monocytogenes in ready-to-eat (RTE) foods. This dual-model approach provides insights into both mechanistic activity and practical limitations of spore probiotics in complex food matrices. Full article
Show Figures

Figure 1

Back to TopTop