Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (459)

Search Parameters:
Keywords = crack-healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 15193 KiB  
Article
Bio-Mitigation of Sulfate Attack and Enhancement of Crack Self-Healing in Sustainable Concrete Using Bacillus megaterium and sphaericus Bacteria
by Ibrahim AbdElFattah, Seleem S. E. Ahmad, Ahmed A. Elakhras, Ahmed A. Elshami, Mohamed A. R. Elmahdy and Attitou Aboubakr
Infrastructures 2025, 10(8), 205; https://doi.org/10.3390/infrastructures10080205 (registering DOI) - 7 Aug 2025
Abstract
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance [...] Read more.
Concrete cracks and sulfate degradation severely compromise structural durability, highlighting the need for sustainable solutions to enhance longevity and minimize environmental impact. This study assesses the efficacy of bacterial self-healing technology utilizing Bacillus megaterium (BM) and Bacillus sphaericus (BS) in enhancing the resistance of concrete to sulfate attacks and improving its mechanical properties. Bacterial suspensions (1% and 2.5% of cement weight) were mixed with concrete containing silica fume or fly ash (10% of cement weight) and cured in freshwater or sulfate solutions (2%, 5%, and 10% concentrations). Specimens were tested for compressive strength, flexural strength, and microstructure using a Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD) at various ages. The results indicate that a 2.5% bacterial content yielded the best performance, with BM surpassing BS, enhancing compressive strength by up to 41.3% and flexural strength by 52.3% in freshwater-cured samples. Although sulfate exposure initially improved early-age strength by 1.97% at 7 days, it led to an 8.5% loss at 120 days. Bacterial inclusion mitigated sulfate damage through microbially induced calcium carbonate precipitation (MICP), sealing cracks, and bolstering durability. Cracked specimens treated with BM recovered up to 93.1% of their original compressive strength, promoting sustainable, sulfate-resistant, self-healing concrete for more resilient infrastructure. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 - 1 Aug 2025
Viewed by 222
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 235
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 762
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 343
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 367
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

26 pages, 10116 KiB  
Article
Intelligent Automated Monitoring and Curing System for Cracks in Concrete Elements Using Integrated Sensors and Embedded Controllers
by Papa Pio Ascona García, Guido Elar Ordoñez Carpio, Wilmer Moisés Zelada Zamora, Marco Antonio Aguirre Camacho, Wilmer Rojas Pintado, Emerson Julio Cuadros Rojas, Hipatia Merlita Mundaca Ramos and Nilthon Arce Fernández
Technologies 2025, 13(7), 284; https://doi.org/10.3390/technologies13070284 - 3 Jul 2025
Viewed by 407
Abstract
This study addresses the formation, detection, and repair of cracks in concrete elements exposed to temperatures above 25 °C, where accelerated evaporation compromises their structural strength. An automated intelligent curing system with embedded sensors (DS18B20, HD-38) and Arduino controllers was developed and applied [...] Read more.
This study addresses the formation, detection, and repair of cracks in concrete elements exposed to temperatures above 25 °C, where accelerated evaporation compromises their structural strength. An automated intelligent curing system with embedded sensors (DS18B20, HD-38) and Arduino controllers was developed and applied to solid slabs, columns, and concrete test specimens (1:2:3.5 mix ratio). The electronic design was simulated in Proteus and validated experimentally under tropical conditions. Data with normal distribution (p > 0.05) showed a significant correlation between internal and ambient temperature (r = 0.587; p = 0.001) and a low correlation in humidity (r = 0.143; p = 0.468), indicating hygrometric independence. The system healed cracks of 0.01 mm observed two hours after pouring the mixture, associated with an evaporation rate of 1.097 mL/s in 4 m2. For 28 days, automated irrigation cycles were applied every 30 to 60 min, with a total of 1680 L, achieving a 20% reduction in water consumption compared to traditional methods. The system maintained stable thermal conditions in the concrete despite ambient temperatures of up to 33.85 °C. A critical evaporation range was identified between 11:00 and 16:00 (UTC-5). The results demonstrate the effectiveness of the embedded system in optimizing curing, water efficiency, and concrete durability. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

37 pages, 8780 KiB  
Article
Sustainable Self-Healing Geopolymer Concrete Incorporating Recycled Plastic, Brick Waste, and Bacillus sphaericus
by Tamer I. Ahmed, Ahmed S. Rashed and Dina E. Tobbala
Ceramics 2025, 8(2), 72; https://doi.org/10.3390/ceramics8020072 - 17 Jun 2025
Cited by 2 | Viewed by 788
Abstract
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted [...] Read more.
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted in reduced thermal conductivity, maintenance costs, and environmental impact. This study investigated the effects of varying amounts of CB, F-PET, and SHM on several properties, including flowability, setting times, densities, ductility index (DI), and mechanical strengths, across 13 different mixtures. Additionally, water absorption (WA%), residual weight loss (WL%), and relative dynamic modulus of elasticity (RDME%) were assessed following freeze–thaw cycles, alongside SEM analysis and thermal transport measurements of the SHG mixtures. The inclusion of up to 50% CB enhanced density and thermal conductivity but negatively affected other properties. In contrast, incorporating 25% F-PET led to modest improvements in mechanical, thermal, and durability properties; however, it did not reduce density and thermal conductivity as effectively as CB. Among the three mixtures containing both CB and F-PET, the formulation with 37.5% CB and 12.5% F-PET exhibited the lowest density (1650 kg/m3) and thermal conductivity (1.083 W/m·K). The self-healing capacity of SHM was demonstrated through its ability to close cracks, facilitated by the deposition of CaCO3 under combined durability conditions. Incorporating 2%, 3%, and 4% SHM into the 37.5% CB and 12.5% F-PET mixture significantly improved key properties, including strength, water absorption, freeze–thaw resistance, SEM characteristics, density, and thermal conductivity. The addition of 4% SHM enhanced the mechanical performance of the geopolymer concrete (GVC) after 28 days, resulting in increases of 27% in compressive strength, 40.5% in tensile strength, 81% in flexural strength, and 61.6% in ductility index. Further, the inclusion of SHM improved density, reduced WA% and WL%, and enhanced RDME% after 300 freeze–thaw cycles. Specifically, thermal conductivity decreased from 1.8 W/m·K to 0.88 W/m·K, and density reduced from 2480 kg/m3 to 1760 kg/m3. Meanwhile, WA%, WL%, and RDME% improved from 3%, 4.5%, and 45% to 2%, 2.5%, and 50%, respectively. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

48 pages, 11385 KiB  
Review
Ranking Bacteria for Carbon Capture and Self-Healing in Concrete: Performance, Encapsulation, and Sustainability
by Ajitanshu Vedrtnam, Kishor Kalauni and Martin T. Palou
Sustainability 2025, 17(12), 5353; https://doi.org/10.3390/su17125353 - 10 Jun 2025
Cited by 1 | Viewed by 1524
Abstract
Concrete production contributes nearly 8% of the global CO2 emissions, making carbon capture in construction materials a critical environmental priority. While microbial self-healing concrete has shown promise in repairing structural cracks, its potential to serve as a carbon-negative material through atmospheric CO [...] Read more.
Concrete production contributes nearly 8% of the global CO2 emissions, making carbon capture in construction materials a critical environmental priority. While microbial self-healing concrete has shown promise in repairing structural cracks, its potential to serve as a carbon-negative material through atmospheric CO2 sequestration remains underutilized. This interdisciplinary review—designed for materials scientists, civil engineers, and environmental technologists—systematically evaluates bacterial candidates for their application in self-healing, carbon-capturing concrete. Bacteria are ranked according to their efficiency in capturing CO2 through both direct mechanisms (e.g., photosynthetic fixation by cyanobacteria) and indirect pathways (e.g., ureolysis-driven calcium carbonate precipitation). The assessment also considers microbial survivability in high-alkalinity concrete environments, the effectiveness of encapsulation strategies in enhancing bacterial viability and function over time, and sustainability metrics such as those derived from life cycle assessment (LCA) analyses. The findings highlight Bacillus sphaericus and Sporosarcina pasteurii as high-performing species in terms of rapid mineralization and durability, while encapsulation significantly improves the long-term viability for species like Paenibacillus mucilaginosus and Synechococcus. Notably, Bacillus sphaericus and Sporosarcina pasteurii exhibit carbonate precipitation rates of 75–100 mg CaCO3/g biomass and enable crack closure of up to 0.97 mm within 8 weeks. The proposed bacterial ranking framework, paired with performance data and environmental modeling, provides a foundation for the advancement of scalable, carbon-negative concrete solutions. Full article
(This article belongs to the Special Issue Sustainable Approaches for Developing Concrete and Mortar)
Show Figures

Figure 1

25 pages, 11254 KiB  
Article
Pseudotachylyte Formation in Brittle–Ductile Transition of the Anning River Fault Zone: Implications for Seismic Processes
by Wenhao Dai, Yongsheng Zhou, Huiru Lei, Xi Ma, Jiaxiang Dang, Sheqiang Miao, Shimin Liu and Changrong He
Appl. Sci. 2025, 15(11), 5870; https://doi.org/10.3390/app15115870 - 23 May 2025
Viewed by 352
Abstract
Pseudotachylytes and cataclasites record transient seismic slips within the brittle–ductile transition zone and ductile flow layers. Investigating the mechanisms of pseudotachylytes can provide the most direct geological evidence for revealing seismic fault slip and coseismic processes. We investigate the deformation and chemical composition [...] Read more.
Pseudotachylytes and cataclasites record transient seismic slips within the brittle–ductile transition zone and ductile flow layers. Investigating the mechanisms of pseudotachylytes can provide the most direct geological evidence for revealing seismic fault slip and coseismic processes. We investigate the deformation and chemical composition of pseudotachylytes, cataclasites, and mylonites collected from the Anning River fault zone in this study. Three kinds of pseudotachylyte veins were found in granite gneiss and cataclasite. Microstructural analyses show that pseudotachylytes and cataclasites developed within granitic gneiss and mylonites, and EBSD analysis indicates granitic gneiss deformed at temperatures of 250–350 °C. All of the pseudotachylytes are enriched in Fe and Ca, with SiO2 content closely resembling that of the wall rock of granitic gneiss. The geochemical results indicate that pseudotachylytes originated from the in situ melting of granitic gneiss, which was produced during coseismic frictional heating. Based on the deformation and geochemical data of mylonites, cataclasites, and pseudotachylytes, a simple model of the seismogenic layer is established for rock deformation during coseismic, post-seismic relaxation, and interseismic periods. Mylonite represents the rheological flow of the brittle–ductile transition zone during interseismic periods, cataclasites display brittle fracturing during coseismic rupture, and pseudotachylytes stand for localized melting induced by coseismic frictional heating. During the post-seismic relaxation, crack healing and static recrystallization of quartz occur. Full article
Show Figures

Figure 1

14 pages, 3273 KiB  
Article
Improved Autogenous Healing of Concrete with Superabsorbent Polymers Evaluated Through Coupled and Air-Coupled Ultrasound
by Gerlinde Lefever
Buildings 2025, 15(10), 1691; https://doi.org/10.3390/buildings15101691 - 17 May 2025
Viewed by 413
Abstract
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount [...] Read more.
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount included. To evaluate the self-healing effectiveness, the regain of mechanical performance needs to be assessed. However, such evaluation requires destructive testing, meaning that the healing progress cannot be followed over time. As a solution, air-coupled ultrasonic testing was used within this study, adopting a novel laser interferometer as a receiver, to estimate the regained properties of cementitious mixtures with and without superabsorbent polymers. The sensitivity of ultrasonic waves to the elastic properties of the material under study allows us to monitor the crack healing progress, while the semi-contactless nature of the procedure enables an easy and reliable measurement. Up to 80% recovery in ultrasonic velocity was achieved with reference concrete, while SAP concrete demonstrated up to 100% recovery after wet–dry curing. Following microscopic analysis, up to 19% visual crack closure was obtained for reference concrete, compared to a maximum of 50% for SAP mixtures, for average crack widths between 250 µm and 450 µm. Full article
Show Figures

Figure 1

24 pages, 4734 KiB  
Article
Development and Optimization of Self-Healing Cement for CO2 Injection and Storage Wells: Enhancing Long-Term Wellbore Integrity in Extreme Subsurface Conditions
by Ahmed Alsubaih, Kamy Sepehrnoori and Mojdeh Delshad
Appl. Sci. 2025, 15(10), 5428; https://doi.org/10.3390/app15105428 - 13 May 2025
Cited by 1 | Viewed by 733
Abstract
Ensuring long-term wellbore integrity is critical for CO2 injection and storage operations. Conventional cement degrades in CO2-rich environments, compromising zonal isolation and increasing leakage risks. This study presents a novel self-healing cement formulation incorporating Barite, Pozzolan, and Chalcedony, optimized using [...] Read more.
Ensuring long-term wellbore integrity is critical for CO2 injection and storage operations. Conventional cement degrades in CO2-rich environments, compromising zonal isolation and increasing leakage risks. This study presents a novel self-healing cement formulation incorporating Barite, Pozzolan, and Chalcedony, optimized using a Design of Experiment (DOE) approach. Geochemical simulations were conducted using PHREEQC and Python to evaluate porosity evolution, mineral stability, and self-sealing efficiency under CO2 exposure. The results demonstrate that the optimized formulations significantly reduce porosity (within 7–14 days) through the formation of calcium silicate hydrate (C-S-H) gels, enhancing crack sealing and mechanical resilience. Saturation index and phase volume analyses confirm the long-term stability of ECSH2 and Calcite, reinforcing the cement matrix. Compared to conventional cement, the self-healing formulations exhibit improved durability, lower permeability, and superior resistance to CO2-induced degradation. These findings support the use of self-healing cement in carbon capture and storage (CCS), geothermal energy, and deep-well applications, offering a cost-effective and durable solution for long-term wellbore integrity. However, further experimental validation and field-scale evaluation are needed to confirm the practical performance of these formulations under real-world reservoir conditions. Full article
Show Figures

Figure 1

23 pages, 12479 KiB  
Article
Enhancement of Bacterial Survival and Self-Healing Performance in Mortars After Exposure to Negative Temperature Using Alumina Hollow Spheres as Bacterial Carriers
by Yan-Sheng Wang, Yi-Ze Zhou, Xu-Dong Wang and Guang-Zhu Zhang
Materials 2025, 18(10), 2245; https://doi.org/10.3390/ma18102245 - 12 May 2025
Viewed by 499
Abstract
Negative temperature environments inhibit bacterial survival in cementitious materials and reduce the self-healing ability of bacteria. To address this challenge, acid-etched alumina hollow spheres are proposed as carriers to encapsulate microorganisms in cementitious materials. The effects of these carriers on the mechanical properties, [...] Read more.
Negative temperature environments inhibit bacterial survival in cementitious materials and reduce the self-healing ability of bacteria. To address this challenge, acid-etched alumina hollow spheres are proposed as carriers to encapsulate microorganisms in cementitious materials. The effects of these carriers on the mechanical properties, thermal conductivity, self-healing properties, and self-healing products of specimens after exposure to −20 °C were investigated. Finally, the self-healing mechanism was examined and analyzed. The results demonstrated the effectiveness of the acid-etched hollow microbeads as bacterial carriers. The addition of the alumina hollow spheres participating in the cement hydration reaction enhanced the mechanical properties of the mortar and reduced its thermal conductivity, which supported bacterial survival in the negative temperature environment. Although negative temperature environments may reduce bacterial populations, the hydrolysis of aluminum ions in the alumina hollow spheres during bacterial metabolism resulted in the precipitation of aluminum hydroxide flocs. These flocs adsorbed free calcium carbonate in the pores, converting it into effective calcium carbonate with cementing properties, thus enhancing the crack healing capability of the examined specimens. This microbe-based self-healing strategy, utilizing alumina hollow spheres as bacterial carriers, is anticipated to provide an effective solution for achieving efficient crack self-healing in mortars that is resistant to the detrimental effects of negative temperature conditions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

23 pages, 27773 KiB  
Article
Influence of Coarse Cement Particle Content on Intrinsic Self-Healing of Mortar
by Xingkong Ma, Wu Yao, Anming She and Yongqi Wei
Materials 2025, 18(10), 2216; https://doi.org/10.3390/ma18102216 - 11 May 2025
Viewed by 358
Abstract
This study investigated the effect of coarse cement on the self-healing ability of mortar. Coarse cement, prepared via negative-pressure screening, was substituted (0–40%) in mortar mixes with water/cement (w/c) ratios of 0.45–0.55. The specimens were cured for 28 days, cracked, and allowed to [...] Read more.
This study investigated the effect of coarse cement on the self-healing ability of mortar. Coarse cement, prepared via negative-pressure screening, was substituted (0–40%) in mortar mixes with water/cement (w/c) ratios of 0.45–0.55. The specimens were cured for 28 days, cracked, and allowed to self-heal for another 28 days. Self-healing was evaluated based on compressive strength recovery and ultrasonic pulse velocity. At a 0.50 w/c ratio, 10% coarse cement substitution achieved 87.7% strength recovery (21.2 MPa increase), outperforming the control group (74.1%, 13.0 MPa). Reducing the w/c ratio to 0.45 further enhanced recovery to 89.4% (21.5 MPa). While coarse particles alone reduced the initial strength, combining their addition (e.g., 10%) with a lower w/c ratio (0.45) improved self-healing without significant strength loss. Based on the Krstulović–Dabić model and a micro-geometric model incorporating hydration units, this study analyzed the intrinsic self-healing mechanism of cement-based materials through computational results. Theoretical calculations demonstrated that during cement hydration, coarser particles can form a microcapsule-like structure where hydration products encapsulate unhydrated cement. The findings suggest that optimizing coarse particle content and the w/c ratio can balance self-healing enhancement and mechanical performance, offering a viable strategy for energy saving and emission reduction by reducing the carbon emissions per unit of service life and the grinding process in cement production. Full article
(This article belongs to the Special Issue Life-Cycle Assessment of Sustainable Concrete)
Show Figures

Figure 1

6 pages, 926 KiB  
Proceeding Paper
Development and Performance Evaluation of Self-Healing PVA-PAA-Coated PES Membrane for Water Pollution Mitigation
by Kok Chung Chong, Woon Chan Chong, Yean Ling Pang, Siew Hoong Shuit, Eng Cheong Wong, Yung Xin Koh and Grace Qian Von Lim
Proceedings 2025, 117(1), 23; https://doi.org/10.3390/proceedings2025117023 - 30 Apr 2025
Viewed by 283
Abstract
Water pollution is a major environmental issue caused by the discharge of untreated or partially treated wastewater into rivers and oceans. Self-healing materials, which can repair localized damage, have become a promising approach to counter membrane performance decline from mechanical wear. However, ensuring [...] Read more.
Water pollution is a major environmental issue caused by the discharge of untreated or partially treated wastewater into rivers and oceans. Self-healing materials, which can repair localized damage, have become a promising approach to counter membrane performance decline from mechanical wear. However, ensuring stability and effectiveness in self-healing membranes remains a challenge. Polyvinyl alcohol (PVA) has been widely studied for its self-healing properties, while polyacrylic acid (PAA) is often used as a crosslinking agent due to its compatibility with PVA, especially in biomedical and filtration applications. In this study, a self-healing PVA-PAA coating was applied to a PES membrane. The PVA solution (5 wt%) was prepared by dissolving beads in distilled water and stirring at 80 °C for 6 h, while the PAA solution was diluted to match this concentration. The two solutions were mixed in a 3:1 molar ratio and heated to form a homogenous mixture, then coated onto PES membranes and crosslinked at 140 °C. Scanning electron microscopy (SEM) revealed a uniform, crack-free coating on the membrane surface. The mechanical properties of the membrane show a tensile strength of 4.85 MPa and elongation of 71.9%. Filtration tests showed that the PVA-PAA-coated PES membrane achieved a water flux of 36.16 L/m2h. The performance of the PVA-PAA coated PES membrane remained stable in terms of water flux and dye rejection after it healed, and the water flux was recorded at the range of 34.24 to 36.02 L/m2h after the seal healing. This self-healing PVA-PAA coated PES membrane demonstrates the practical potential for sustainable water treatment, offering reduced maintenance and extended lifespan for filtration systems. Full article
Show Figures

Figure 1

Back to TopTop