Application and Characterization of Innovative Cementitious Materials in the Construction Industry

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Materials, and Repair & Renovation".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 532

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
Interests: concrete technology; self-healing concrete; superabsorbent polymers; nano-additives; ultrasound
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

For many years, the cement industry has been the main contributor to greenhouse gas emissions, making reducing its environmental impact a central theme for civil engineering research. A solution could be found by increasing the lifespan of construction elements, either through the adoption of innovative cementitious mixtures or through early damage detection. In this way, extensive repairs or rebuilding could be avoided. To meet these requirements, a search for more durable and high-performance cementitious mixtures has been initiated. This Special Issue will gather research papers on the topic of such innovative cementitious blends, comprising various additives that provide exceptional characteristics, such as improved durability, increased mechanical strength, or self-healing characteristics. Examples of additives include pozzolanic binders, nano-additives, recycled materials, hydrogels, and fibers. The Special Issue will also welcome papers on novel testing methodologies, e.g. non-destructive techniques, that allow us to increase structures’ service lives through early damage detection or the monitoring of newly developed properties.

Dr. Gerlinde Lefever
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • (ultra-)high-performance concrete
  • durability
  • self-healing concrete
  • nanomaterials
  • fibers
  • hydrogels
  • non-destructive testing
  • ultrasound
  • acoustic emission

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3273 KiB  
Article
Improved Autogenous Healing of Concrete with Superabsorbent Polymers Evaluated Through Coupled and Air-Coupled Ultrasound
by Gerlinde Lefever
Buildings 2025, 15(10), 1691; https://doi.org/10.3390/buildings15101691 - 17 May 2025
Viewed by 321
Abstract
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount [...] Read more.
Superabsorbent polymers have been introduced into cementitious materials to solve issues related to early-age cracking, caused by shrinkage, and manual repair. A general improvement of autogenous healing is noticed, while the extent and effectiveness depend on the type of hydrogel and the amount included. To evaluate the self-healing effectiveness, the regain of mechanical performance needs to be assessed. However, such evaluation requires destructive testing, meaning that the healing progress cannot be followed over time. As a solution, air-coupled ultrasonic testing was used within this study, adopting a novel laser interferometer as a receiver, to estimate the regained properties of cementitious mixtures with and without superabsorbent polymers. The sensitivity of ultrasonic waves to the elastic properties of the material under study allows us to monitor the crack healing progress, while the semi-contactless nature of the procedure enables an easy and reliable measurement. Up to 80% recovery in ultrasonic velocity was achieved with reference concrete, while SAP concrete demonstrated up to 100% recovery after wet–dry curing. Following microscopic analysis, up to 19% visual crack closure was obtained for reference concrete, compared to a maximum of 50% for SAP mixtures, for average crack widths between 250 µm and 450 µm. Full article
Show Figures

Figure 1

Back to TopTop