Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = coupled denitrification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 283
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 345
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

20 pages, 3076 KiB  
Article
Options and Scenarios for the Prishtina Wastewater Treatment Plant-Design Efficiency
by Sokol Xhafa, Tamás Koncsos and Miklós Patziger
Water 2025, 17(15), 2220; https://doi.org/10.3390/w17152220 - 25 Jul 2025
Viewed by 307
Abstract
This research assesses the design efficiency of the future centralized wastewater treatment plant (WWTP) in Prishtina, which also takes into consideration rapidly expanding suburban areas, such as Fushë Kosova, Obiliq, and Graçanica. Using a combination of both ATV-DVWK-A 131E deterministic calculations and dynamic [...] Read more.
This research assesses the design efficiency of the future centralized wastewater treatment plant (WWTP) in Prishtina, which also takes into consideration rapidly expanding suburban areas, such as Fushë Kosova, Obiliq, and Graçanica. Using a combination of both ATV-DVWK-A 131E deterministic calculations and dynamic simulation with IWASP, this study focuses on the planned configurations for the future Prishtina wastewater treatment plant (WWTP) to evaluate design efficiency alongside operational feasibility. The primary goal was to determine if meeting projected loads for the year 2040 would be possible with compliance requirements for a single-stage CAS system. Simulation data suggest that reliable nitrogen removal would not be possible with a sole CAS stage (aerobic), particularly considering seasonal and peak load dynamics. Alternatively, an optimized three-reactor CAS model, including one anoxic pre-denitrification zone coupled with two alternating aerobic zones, achieved an average total nitrogen (TN) removal efficiency of about 85%, maintaining effluent TN below 10 mg/L. Additional advantages saw COD being removed at rates between 90 and 92%, along with MLSS levels stabilizing around 3500 mg/L. The flexibly scalable design also provides adaptive operation features, including expanded tertiary nutrient removal in phase II. In scenario two’s site comparative analysis, Lismir’s centralized WWTP emerges as the most economically and technically rational option due to the enhanced reactor layout optimization. These findings confirm that enhanced configurations, validated through both static and dynamic analyses, are essential for long-term treatment efficiency and regulatory compliance. Full article
(This article belongs to the Special Issue Urban Sewer Systems: Monitoring, Modeling and Management)
Show Figures

Figure 1

19 pages, 5133 KiB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Viewed by 564
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

20 pages, 2894 KiB  
Review
Algal–Bacterial Symbiotic Granular Sludge Technology in Wastewater Treatment: A Review on Advances and Future Prospects
by Shengnan Chen, Jiashuo Wang, Xin Feng and Fangchao Zhao
Water 2025, 17(11), 1647; https://doi.org/10.3390/w17111647 - 29 May 2025
Viewed by 1249
Abstract
This review systematically examines the critical mechanisms and process optimization strategies of algal–bacterial granular sludge (ABGS) technology in wastewater treatment. The key findings highlight the following: (1) enhanced pollutant removal—ABGS achieves >90% COD removal, >80% total nitrogen elimination via nitrification–denitrification coupling, and 70–95% [...] Read more.
This review systematically examines the critical mechanisms and process optimization strategies of algal–bacterial granular sludge (ABGS) technology in wastewater treatment. The key findings highlight the following: (1) enhanced pollutant removal—ABGS achieves >90% COD removal, >80% total nitrogen elimination via nitrification–denitrification coupling, and 70–95% phosphorus uptake through polyphosphate-accumulating organisms (PAOs), with simultaneous adsorption of heavy metals (e.g., Cu2+, Pb2+) via EPS binding; (2) energy-saving advantages—microalgal oxygen production reduces aeration energy consumption by 30–50% compared to conventional activated sludge, while the granular stability maintains >85% biomass retention under hydraulic shocks; (3) AI-driven optimization—machine learning models enable real-time prediction of nutrient removal efficiency (±5% error) by correlating microbial composition (e.g., Nitrosomonas abundance) with operational parameters (DO: 2–4 mg/L, pH: 7.5–8.5). This review further identifies EPS-mediated microbial co-aggregation and Chlorella–Pseudomonas cross-feeding as pivotal for system resilience. These advances position ABGS as a sustainable solution for low-carbon wastewater treatment, although challenges persist in scaling photobioreactors and maintaining symbiosis under fluctuating industrial loads. Full article
(This article belongs to the Special Issue Algae-Based Technology for Wastewater Treatment)
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 701
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

13 pages, 1369 KiB  
Technical Note
Design and Initial Testing of Acoustically Stimulated Anaerobic Digestion Coupled with Effluent Aeration for Agricultural Wastewater Remediation
by John H. Loughrin, Philip J. Silva, Stacy W. Antle, Nanh Lovanh, Matias B. Vanotti and Karamat R. Sistani
AgriEngineering 2025, 7(5), 136; https://doi.org/10.3390/agriengineering7050136 - 5 May 2025
Viewed by 685
Abstract
The construction of an anaerobic digester coupled with post-digestion low-level aeration for agricultural wastewater treatment is described. The digester employs underwater speakers to accelerate the anaerobic digestion process while retaining solids to reduce the strength of the effluent. The effluent is sent to [...] Read more.
The construction of an anaerobic digester coupled with post-digestion low-level aeration for agricultural wastewater treatment is described. The digester employs underwater speakers to accelerate the anaerobic digestion process while retaining solids to reduce the strength of the effluent. The effluent is sent to a holding tank and fed at a low flow rate to an aeration tank to effect partial nitrification of the wastewater. The outlet of this tank is sent to a settling tank to retain biomass that developed in the aeration tank, and the effluent is sent to a small constructed wetland to further reduce wastewater nitrogen and phosphorus. The wetland was planted with the broadleaf cattail, Typha latifolia, and hence led to the formation of a retention basin. The system has reduced energy consumption due to the use of underwater sonic treatment and low-level aeration that is not designed to achieve full nitrification/denitrification but rather to achieve a mixture of ammonium, nitrite, and nitrate that might foster the development of a consortium of organisms (i.e., nitrifiers and Anammox bacteria) that can remediate wastewater ammonium at low cost. The system is meant to serve as a complex where various technologies and practices can be evaluated to improve the treatment of agricultural wastewater. Preliminary data from the system are presented. Full article
Show Figures

Figure 1

27 pages, 3565 KiB  
Article
Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa
by Henry Joseph Oduor Ogola, Ramganesh Selvarajan, Somandla Ncube and Lawrence Madikizela
Biology 2025, 14(5), 503; https://doi.org/10.3390/biology14050503 - 5 May 2025
Viewed by 654
Abstract
Sulfur cycling is a fundamental biogeochemical process, yet its microbial underpinnings in environments like the Isinuka sulfur pool remain poorly understood. Using high-throughput Illumina 16S rRNA sequencing and PICRUSt-based functional inference, we analyzed bacterial diversity and metabolic potential in sediment and water samples. [...] Read more.
Sulfur cycling is a fundamental biogeochemical process, yet its microbial underpinnings in environments like the Isinuka sulfur pool remain poorly understood. Using high-throughput Illumina 16S rRNA sequencing and PICRUSt-based functional inference, we analyzed bacterial diversity and metabolic potential in sediment and water samples. Sediments, characterized by high sulfide/sulfate/thiosulfate, salinity, alkalinity, and organic matter content under anoxic conditions, supported diverse sulfur-reducing and organic-degrading bacteria, primarily from the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. In contrast, the anoxic water column harbored a less diverse community dominated by α-, γ-, and β-Proteobacteria, including Thiocapsa and Lutimaribacter. Sulfur oxidation genes (soxABCXYZ, sqr) were abundant in water, while sulfate reduction genes (dsrAB, aprAB, and sat/met3) were concentrated in sediments. Core microbiome analysis identified Thiocapsa, Lutimaribacter, and Delftia as functional keystones, integrating sulfur oxidation and nutrient recycling. Sediments supported dissimilatory sulfate-reducing bacteria (unclassified Desulfobacteraceae, Desulfosarcina, Desulfococcus, Desulfotignum, and Desulfobacter), while water samples were enriched in sulfur-oxidizing bacteria like Thiocapsa. Metabolic profiling revealed extensive sulfur, nitrogen, and carbon cycling pathways, with sulfur autotrophic denitrification and anoxygenic photosynthesis coupling sulfur–nitrogen and sulfur–carbon cycles. This study provides key theoretical insights into the microbial dynamics in sulfur-rich environments, highlighting their roles in biogeochemical cycling and potential applications in environmental management. Full article
Show Figures

Figure 1

20 pages, 3522 KiB  
Article
Microbially Mediated Arsenic-Nitrogen Biogeochemical Coupling Across Vertical Distribution in Coastal Wetlands
by Yang Zou, Lili Xue, Ting Luo, Sheng Kong, Zirui Zhao, Liang Ding, Kexin Liu, Huaxin Gao and Hao Wu
Water 2025, 17(9), 1255; https://doi.org/10.3390/w17091255 - 23 Apr 2025
Viewed by 533
Abstract
Few studies have addressed the coupling of arsenic (As) and nitrogen (N) geochemistry in natural soil. This research focused on the vertical distribution and coupling behavior of As and N in coastal wetland sediments. Pore water and sediment from barren wetlands and coastal [...] Read more.
Few studies have addressed the coupling of arsenic (As) and nitrogen (N) geochemistry in natural soil. This research focused on the vertical distribution and coupling behavior of As and N in coastal wetland sediments. Pore water and sediment from barren wetlands and coastal wetlands near three estuaries (Guanhe River, Sheyang River, and Liangduo River) in central Jiangsu Province of China with Spartina alterniflora (S. alterniflora) were sampled, which were analyzed for total As content and speciation and N inorganic fractions. The bacterial community was investigated through 16s rDNA sequencing; diversity indices were calculated. The As change trend in pore water of surface sediment with increasing depth was opposite to that of NO3, possibly because NO3 promoted arsenite (As(III)) oxidation to arsenate (As(V)). Increased NO3 contents seemed to mitigate As toxicity. The vertical distribution of NH4+ indicated anaerobic ammonium oxidation and iron (Fe) ammonium oxidation to reduce Fe oxides, resulting in As release, especially in the deeper sediment. High-throughput sequencing analysis revealed some potential bacteria possibly involved in As-N geochemical coupling, such as Bacillus and Psychrobacter, which can couple denitrification with As oxidation, and Sva1033, which may favor ammonium oxidation-induced As release. Our results suggest that the N-driven oxidation of As(III) and the ammonium oxidation-induced As release can be relevant to As-N coupling processes in the coastal wetland and emphasize the importance of microorganisms in such processes. This research deepens our understanding of As-N coupling in natural coastal wetlands, providing a theoretical basis for controlling As pollution. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 4854 KiB  
Article
Impact of Iron Minerals on Nitrate Reduction in the Lake–Groundwater Interaction Zone of High-Salinity Environment
by Zhen Wang, Yuyu Wan, Zhe Ma, Luwen Xu, Yuanzheng Zhai and Xiaosi Su
Water 2025, 17(9), 1241; https://doi.org/10.3390/w17091241 - 22 Apr 2025
Viewed by 552
Abstract
Nitrate is the most prevalent inorganic pollutant in aquatic environments, posing a significant threat to human health and the ecological environment, especially in lakes and groundwater, which are located in the high agricultural activity intensity areas. In order to reveal the sources of [...] Read more.
Nitrate is the most prevalent inorganic pollutant in aquatic environments, posing a significant threat to human health and the ecological environment, especially in lakes and groundwater, which are located in the high agricultural activity intensity areas. In order to reveal the sources of nitrogen pollution in lakes and groundwater, this study of the transformation mechanism of nitrogen in the interaction zone between lakes and groundwater has become an important foundation for pollution prevention and control. The coupling effect between the biogeochemical processes of nitrate and iron has been pointed out to be widely present in various water environments in recent years. However, the impact of iron minerals on nitrate reduction in the lake–groundwater interaction zone of a high-salinity environment still remains uncertain. Based on the sediment and water chemistry characteristics of the Chagan Lake–groundwater interaction zone in northeastern China (groundwater TDS: 420~530 mg/L, Na+: 180~200 mg/L, and Cl: 15~20 mg/L and lake water TDS: 470~500 mg/L, Na+: 210~240 mg/L, and Cl: 71.40~87.09 mg/L), this study simulated relative oxidizing open system conditions and relative reducing closed conditions to investigate hematite and siderite effects on nitrate reduction and microbial behavior. The results indicated that both hematite and siderite promoted nitrate reduction in the closed system, whereas only siderite promoted nitrate reduction in the open system. Microbial community analysis indicated that iron minerals significantly promoted functional bacterial proliferation and restructured community composition by serving as electron donors/acceptors. In closed systems, hematite addition preferentially enriched Geobacter (denitrification, +15% abundance) and Burkholderiales (DNRA, +12% abundance), while in open systems, siderite addition fostered a distinct iron-carbon coupled metabolic network through Sphingomonas enrichment (+48% abundance), which secretes organic acids to enhance iron dissolution. These microbial shifts accelerated Fe(II)/Fe(III) cycling rates by 37% and achieved efficient nitrogen removal via combined denitrification and DNRA pathways. Notably, the open system with siderite amendment demonstrated the highest nitrate removal efficiency (80.6%). This study reveals that iron minerals play a critical role in regulating microbial metabolic pathways within salinized lake–groundwater interfaces, thereby influencing nitrogen biogeochemical cycling through microbially mediated iron redox processes. Full article
(This article belongs to the Special Issue Groundwater Environmental Risk Perception)
Show Figures

Figure 1

15 pages, 5449 KiB  
Article
Spatial Heterogeneity of the Microbial Community in the Surface Sediments in the Okinawa Trough
by Ye Chen, Nengyou Wu, Cuiling Xu, Youzhi Xin, Jing Li, Xilin Zhang, Yucheng Zhou and Zhilei Sun
J. Mar. Sci. Eng. 2025, 13(4), 653; https://doi.org/10.3390/jmse13040653 - 25 Mar 2025
Viewed by 557
Abstract
The Okinawa Trough (OT) has been a focus of scientific research for many years due to the presence of vibrant hydrothermal and cold seep activity within its narrow basin. However, the spatial distribution and environmental drivers of microbial communities in OT sediments remain [...] Read more.
The Okinawa Trough (OT) has been a focus of scientific research for many years due to the presence of vibrant hydrothermal and cold seep activity within its narrow basin. However, the spatial distribution and environmental drivers of microbial communities in OT sediments remain poorly understood. The present study aims to address this knowledge gap by investigating microbial diversity and abundance at ten different sampling sites in a transitional zone between hydrothermal vents and cold seeps in the OT. The microbial community at two sampling sites (G08 and G09) in close proximity to hydrothermal vents showed a high degree of similarity. However, lower bacterial and archaeal abundances were found in these sites. The archaeal groups, classified as Hydrothermarchaeota and Thermoplasmata, showed a comparatively higher relative abundance at these sites. In addition, ammonia-oxidizing archaea (AOA), from the family Nitrosopumilaceae, were found to have a higher relative abundance in the OT surface sediments at sampling sites G03, G04, G05, G06, and G07. This result suggests that ammonia oxidation may be actively occurring in these areas. Furthermore, Methylomirabilaceae, which are responsible for methane oxidation coupled with nitrite reduction, dominated three sampling sites (G07, G08, and G09), implying that N-DAMO may play an important role in mitigating methane emissions. Using the FAPROTAX database, we found that predicted prokaryotic microbial functional groups involved in methyl-reducing methanogenesis and hydrogenotrophic methanogenesis were most abundant at sites G08 and G09. At sampling sites G01 and G02, functional groups such as hydrocarbon degradation, methanotrophy, methanol oxidation, denitrification, sulfate respiration, and sulfur oxidation were more abundant. Nitrogen content is the most important environmental factor determining the bacterial and archaeal communities in the OT surface sediments. These results expand our knowledge of the spatial distribution of microbial communities in the transitional zone between hydrothermal vents and cold seeps in the OT. Full article
(This article belongs to the Special Issue Research Progress on Deep-Sea Organisms)
Show Figures

Figure 1

27 pages, 3985 KiB  
Review
Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives
by Pradeep Singh, Monish Bisen, Sourabh Kulshreshtha, Lokender Kumar, Shubham R. Choudhury, Mayur J. Nath, Manabendra Mandal, Aman Kumar and Sanjay K. S. Patel
Bioengineering 2025, 12(4), 330; https://doi.org/10.3390/bioengineering12040330 - 22 Mar 2025
Cited by 4 | Viewed by 1508
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage [...] Read more.
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

19 pages, 2768 KiB  
Article
Optimizing Nitrogen Removal Through Coupled Simultaneous Nitrification-Denitrification and Sulfur Autotrophic Denitrification: Microbial Community Dynamics and Functional Pathways in Mariculture Tailwater Treatment
by Shuaifeng Jiang, Haoran Huang, Yongli Chen, Jianhua Xiong, Ziyuan Lin and Shuangfei Wang
Water 2025, 17(5), 683; https://doi.org/10.3390/w17050683 - 26 Feb 2025
Cited by 1 | Viewed by 1110
Abstract
This study investigates the nitrogen removal pathways and microbial community dynamics in a novel system coupling simultaneous nitrification and denitrification (SND) with sulfur autotrophic denitrification (SAD) for the treatment of mariculture tailwater. High-throughput sequencing and predictive functional analysis were employed to examine microbial [...] Read more.
This study investigates the nitrogen removal pathways and microbial community dynamics in a novel system coupling simultaneous nitrification and denitrification (SND) with sulfur autotrophic denitrification (SAD) for the treatment of mariculture tailwater. High-throughput sequencing and predictive functional analysis were employed to examine microbial compositions and their functional roles across varying carbon-to-nitrogen (C/N) ratios. The results revealed that SND occurred in the aerobic stage, with Nitrosomonas and Nitrospira facilitating nitrification, while Denitromonas and Paracoccus drove denitrification. In the anaerobic stage, SAD was the primary nitrogen removal process, with sulfur metabolism supported by Thiobacillus and Desulfobacteria. Increasing C/N ratios enriched denitrifying bacteria, enhancing nitrogen removal performance, but reduced nitrifying activity. Functional gene analysis demonstrated the upregulation of denitrification genes (napAB, nirS, norBC, nosZ) with higher carbon inputs, while sulfur metabolism genes (sqr, soxB, dsrAB) confirmed the critical role of sulfur cycling in SAD. The integration of SND and SAD pathways, supported by carbon addition, achieved efficient nitrogen removal, while promoting sulfur bioavailability. Under C/N ratios of 1.2, the nitrate nitrogen (NO3-N) removal efficiencies reached 93.48%, respectively, while the total nitrogen (TN) removal efficiencies were 95.06%. Ammonia nitrogen (NH4+-N) removal efficiency consistently exceeded 95%, stabilizing at 99.00% in the steady-state operation. This research provides a comprehensive understanding of the microbial and functional mechanisms underlying SND–SAD systems, offering an innovative solution for sustainable mariculture tailwater management. Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Graphical abstract

22 pages, 2932 KiB  
Review
A Comprehensive Review of Riverbank Filtration Technology for Water Treatment
by Yuanchao Gao, Ye Tang, Min Zhao, Xiangyong Zheng and Huachang Jin
Water 2025, 17(3), 371; https://doi.org/10.3390/w17030371 - 28 Jan 2025
Cited by 1 | Viewed by 1977
Abstract
Riverbank filtration (RBF) technology has been applied and investigated worldwide for water supplies due to its sustainable water quantity guarantee and reliable quality improvement. In this work, the development history, application status, research progress, and technical overview of RBF are reviewed and summarized. [...] Read more.
Riverbank filtration (RBF) technology has been applied and investigated worldwide for water supplies due to its sustainable water quantity guarantee and reliable quality improvement. In this work, the development history, application status, research progress, and technical overview of RBF are reviewed and summarized. RBF usually uses rivers, lakes, and groundwater as raw water, with a few cases using seawater. Nitrogen removal in RBF systems primarily occurs through key geochemical processes such as adsorption, denitrification, organic nitrogen mineralization, and dissimilatory nitrate reduction to ammonium (DNRA). For the attenuation of emerging contaminants in groundwater environments, key processes such as filtration, adsorption, and biotransformation play a crucial role, and microorganisms are essential. Based on a discussion of the advantages and disadvantages, we proposed the research prospects of RBF. To further enhance the water-supply safety and security with RBF, the mechanisms of surface water and groundwater interaction, pollutant removal, and blockage; the impact of capturing surface water on the stability of river ecosystems; and the coupling and synergistic effect of RBF with other water treatment technologies should be deeply investigated. Full article
(This article belongs to the Special Issue Groundwater Quality and Human Health Risk, 2nd Edition)
Show Figures

Figure 1

17 pages, 1916 KiB  
Review
Regulating Denitrification in Constructed Wetlands: The Synergistic Role of Radial Oxygen Loss and Root Exudates
by Haishu Sun, Yuan Zhou and Cancan Jiang
Water 2024, 16(24), 3706; https://doi.org/10.3390/w16243706 - 22 Dec 2024
Cited by 2 | Viewed by 2327
Abstract
Constructed wetland (CW) is a critical ecological engineering for wastewater treatment and improvement of water quality. Nitrogen (N) removal is one of the vital functions of CWs during operation, and N treatment in CWs is mainly affected by aquatic plants and denitrification carried [...] Read more.
Constructed wetland (CW) is a critical ecological engineering for wastewater treatment and improvement of water quality. Nitrogen (N) removal is one of the vital functions of CWs during operation, and N treatment in CWs is mainly affected by aquatic plants and denitrification carried out by microbes. However, due to their low efficiency and instability in N removal, further applications of CWs are limited. The review provides a view of two basic characteristics of aquatic plants, radial oxygen loss (ROL) and root exudates, and their coupled effect on denitrification processes in CWs. First, the role of aquatic plants in denitrification is presented. The individual roles of ROL and root exudates in regulating denitrification, as well as their interaction in this process, have been discussed. Also, the limitation of conventional techniques to reveal interaction between the plant and the microbes has been highlighted. Further research on coupling regulatory mechanisms of ROL and root exudates may be conducted to develop an optimal wetland design and improve biological N removal. This review offers new insights and directions for improving N removal in CWs by utilizing the synergistic effects of plant ROL and root exudates. Full article
(This article belongs to the Special Issue ANAMMOX Based Technology for Nitrogen Removal from Wastewater)
Show Figures

Figure 1

Back to TopTop