Marine Microbiology: Pollution, Bioremediation and Resource Utilization

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: closed (30 November 2025) | Viewed by 2863

Special Issue Editor


E-Mail Website
Guest Editor
Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
Interests: marine ecology; ecological restoration; marine pollutants; resource utilization; biotechnology; marine microbiology

Special Issue Information

Dear Colleagues,

This Special Issue, titled "Marine Microbiology: Pollution, Bioremediation and Resource Utilization", aims to explore the pivotal role of marine microorganisms in addressing environmental pollution, ecological restoration, and resource development. The aim is to promote the translation of marine microbiology from fundamental mechanisms to practical applications through interdisciplinary research, providing scientific support for global marine environmental protection and the development of the blue economy. Below is a detailed description of the main themes, covered fields, and types of submissions suitable for this Special Issue:

  1. Main themes include marine pollution and microbial responses, bioremediation technologies, and resource development and sustainable utilization.
  2. Covered fields encompass environmental science—pollution monitoring, ecotoxicity assessment, microbial feedback on climate change; biotechnology—waste resource conversion; and marine ecology—microbial community structure, functional diversity, and ecological services.
  3. Suggested submission types: original research articles, reviews and perspective papers.

Prof. Dr. Jun Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine microbiology
  • pollution
  • bioremediation
  • resource utilization
  • environmental science
  • biotechnology
  • marine ecology
  • microbial community
  • ecological restoration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3853 KB  
Article
Genomic Analysis of Paenarthrobacter sp. FR1 Reveals Its Marine-Adapted Pectin-Degrading System and Ecological Role in Carbon Cycling
by Zulfira Anwar, Jixin Tao, Jing Lin, Yiran Cui, Hongcai Zhang, Xi Yu, Jiasong Fang and Junwei Cao
Microorganisms 2026, 14(1), 39; https://doi.org/10.3390/microorganisms14010039 - 23 Dec 2025
Viewed by 426
Abstract
Microbial degradation of pectin is a fundamental process for the carbon cycle and a strategic approach for treating industrial residues. This study characterizes a novel marine bacterium, Paenarthrobacter sp. FR1, isolated from East China Sea intertidal sediment, which exhibits the ability to utilize [...] Read more.
Microbial degradation of pectin is a fundamental process for the carbon cycle and a strategic approach for treating industrial residues. This study characterizes a novel marine bacterium, Paenarthrobacter sp. FR1, isolated from East China Sea intertidal sediment, which exhibits the ability to utilize pectin. Its draft genome (4.83 Mb, 62.92% GC content) is predicted to encode 4498 protein-coding genes. Genomic analysis revealed a rich repertoire of Carbohydrate-Active Enzymes (CAZymes) crucial for this process, including 108 glycoside hydrolases (GHs), 7 polysaccharide lyases (PLs), 35 carbohydrate esterases (CEs), and 11 auxiliary activities (AAs). Genomic analysis provides supportive evidence that FR1 may target both homogalacturonan (HG) and rhamnogalacturonan (RG) pectin domains, potentially through complementary hydrolytic and oxidative pathways. Phylogenomic analysis based on Average Nucleotide Identity (ANI, 83.56%) and digital DNA-DNA Hybridization (dDDH, 27.8%) confirmed its status as a potential novel species. Notably, FR1 is a rare Paenarthrobacter isolate with innate pectinolytic capability, a characteristic not previously documented in this genus. This strain’s unique enzymatic machinery highlights its importance in marine carbon cycling and provides a valuable biotechnological resource for degrading pectin-rich wastes. Full article
Show Figures

Figure 1

13 pages, 1266 KB  
Article
Portable Lab for Shipping (POLS): A Biosensor-Based System for Rapid Onboard Detection of Escherichia coli and Enterococcus spp. in Ballast Water
by Stephanie Agioti, Emmanouil Loulakis, Lazaros Konstantinou, Eleni Varda, Antonios Inglezakis, Konstantinos Loizou, Theofylaktos Apostolou and Agni Hadjilouka
Microorganisms 2025, 13(12), 2878; https://doi.org/10.3390/microorganisms13122878 - 18 Dec 2025
Viewed by 367
Abstract
Ballast water (BW) is a major pathway for the spread of invasive microorganisms and pathogens, posing significant ecological and public health risks. The International Maritime Organization (IMO) has established strict discharge standards, yet routine monitoring remains limited, and no reliable onboard test is [...] Read more.
Ballast water (BW) is a major pathway for the spread of invasive microorganisms and pathogens, posing significant ecological and public health risks. The International Maritime Organization (IMO) has established strict discharge standards, yet routine monitoring remains limited, and no reliable onboard test is currently available to assist crews in verifying BW quality before discharge. This study presents the development of a rapid, portable method for onboard microbiological assessment of BW, based on potentiometric detection and biosensors engineered with the Bioelectric Recognition Assay (BERA). Two complementary approaches were evaluated: (i) direct potentiometric measurements of contaminated and non-contaminated samples, which confirmed the feasibility of detecting microbial presence but were restricted by high detection limits, and (ii) development of biosensors specifically engineered for Escherichia coli and Enterococcus spp. to improve specificity and lower the limit of detection (LOD). Results demonstrated successful detection of both microorganisms, with performance characteristics of 83.3% sensitivity and 81.9% accuracy for Enterococcus spp. (LOD: 102 CFU 100 mL−1), and 89.8% sensitivity and 85.1% accuracy for Escherichia coli (LOD: 250 CFU 100 mL−1). These findings underscore the potential of biosensor-based systems as practical, crew-operated tools for early warning and real-time monitoring of ballast water quality, supporting compliance with IMO standards and contributing to safer, more sustainable maritime operations. Full article
Show Figures

Figure 1

19 pages, 5133 KB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Cited by 2 | Viewed by 1719
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

Back to TopTop