Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Protocol
2.2. Physicochemical Property Analyses
2.3. DNA Extraction, Sequencing, and Bioinformatic Processing
2.4. PICRUSt2 Predictive Function Profiling
3. Results and Discussion
3.1. Physicochemical Parameters of the Sediment and Water
3.2. Diversity of Bacterial Communities
3.3. Taxonomic Composition of Bacterial Community
3.4. Stratification of Sulfur-Oxidizing (SOB) and Sulfate-Reducing Bacteria (SRB)
3.5. Potential Functional Diversity and Distribution Patterns
3.6. Biogeochemical Cycling
3.6.1. Carbon and Methane Metabolism
3.6.2. Nitrogen Metabolism
3.6.3. Sulfur Metabolism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camacho, A. Sulfur Bacteria. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 261–278. ISBN 978-0-12-370626-3. [Google Scholar]
- Kumar, U.; Panneerselvam, P.; Gupta, V.V.S.R.; Manjunath, M.; Priyadarshinee, P.; Sahoo, A.; Dash, S.R.; Kaviraj, M.; Annapurna, K. Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. In Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 1: Soil-Microbe Interaction; Adhya, T.K., Lal, B., Mohapatra, B., Paul, D., Das, S., Eds.; Springer: Singapore, 2018; pp. 65–89. ISBN 978-981-10-6178-3. [Google Scholar]
- Magnuson, E.; Altshuler, I.; Freyria, N.J.; Leveille, R.J.; Whyte, L.G. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. Microbiome 2023, 11, 203. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Cowley, E.S.; Trembath-Reichert, E.; Anantharaman, K. Diversity and ecology of microbial sulfur metabolism. Nat. Rev. Microbiol. 2024, 23, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Faniran, J.A.; Ngceba, F.S.; Bhat, R.B.; Oche, C.Y. An assessment of the water quality of the Isinuka springs in the Transkei region of the Eastern Cape, Republic of South Africa. Water SA 2001, 27, 241–250. [Google Scholar] [CrossRef]
- Jumbam, N.D. Mineralogical and geochemical analyses of the healing elements in clayey soils from isinuka traditional spa in Port St Johns, South Africa. Trans. R. Soc. S. Afr. 2013, 68, 25–31. [Google Scholar] [CrossRef]
- Ncube, S.; Mlunguza, N.Y.; Dube, S.; Ramganesh, S.; Ogola, H.J.O.; Nindi, M.M.; Chimuka, L.; Madikizela, L.M. Physicochemical characterization of the pelotherapeutic and balneotherapeutic clayey soils and natural spring water at Isinuka traditional healing spa in the Eastern Cape Province of South Africa. Sci. Total Environ. 2020, 717, 137284. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Bryan, C.G.; Hallberg, K.B.; Johnson, D.B. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ. Microbiol. 2011, 13, 2092–2104. [Google Scholar] [CrossRef]
- Feng, G.; Xie, T.; Wang, X.; Bai, J.; Tang, L.; Zhao, H.; Wei, W.; Wang, M.; Zhao, Y. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol. 2018, 18, 1–13. [Google Scholar] [CrossRef]
- Kiskova, J.; Perhacova, Z.; Vlcko, L.; Sedlakova, J.; Kvasnova, S.; Pristas, P. The Bacterial Population of Neutral Mine Drainage Water of Elizabeth’s Shaft (Slovinky, Slovakia). Curr. Microbiol. 2018, 75, 988–996. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Senko, J.M.; Najar, F.Z.; Kenton, S.M.; Roe, B.A.; Dewers, T.A.; Spear, R.; Krumholz, L.R.; Spear, J.R. Bacterial Diversity and Sulfur Cycling in a Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring. Appl. Environ. Microbiol. 2003, 69, 5609–5621. [Google Scholar] [CrossRef]
- Hahn, C.R.; Farag, I.F.; Murphy, C.L.; Podar, M.; Elshahed, M.S.; Youssef, N.H. Microbial diversity and sulfur cycling in an early earth analogue: From ancient novelty to modern commonality. MBio 2022, 13, e00016-22. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater 23rd Edition; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF): Washington, DC, USA, 2017; ISBN 978-0875532875. [Google Scholar]
- Selvarajan, R.; Sibanda, T.; Tekere, M. Thermophilic bacterial communities inhabiting the microbial mats of “indifferent” and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. Microbiologyopen 2018, 7, e00560. [Google Scholar] [CrossRef] [PubMed]
- Hugerth, L.W.; Wefer, H.A.; Lundin, S.; Jakobsson, H.E.; Lindberg, M.; Rodin, S.; Engstrand, L.; Andersson, A.F. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies. Appl. Environ. Microbiol. 2014, 80, 5116–5123. [Google Scholar] [CrossRef] [PubMed]
- Merkel, A.Y.; Tarnovetskii, I.Y.; Podosokorskaya, O.A.; Toshchakov, S.V. Analysis of 16S rRNA Primer Systems for Profiling of Thermophilic Microbial Communities. Microbiology 2019, 88, 671–680. [Google Scholar] [CrossRef]
- Glenn, T.C.; Nilsen, R.A.; Kieran, T.J.; Sanders, J.G.; Bayona-Vásquez, N.J.; Finger, J.W.; Pierson, T.W.; Bentley, K.E.; Hoffberg, S.L.; Louha, S.; et al. Adapterama I: Universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ 2019, 7, e7755. [Google Scholar] [CrossRef]
- Weber, N.; Liou, D.; Dommer, J.; MacMenamin, P.; Quiñones, M.; Misner, I.; Oler, A.J.; Wan, J.; Kim, L.; Coakley McCarthy, M. Nephele: A cloud platform for simplified, standardized and reproducible microbiome data analysis. Bioinformatics 2018, 34, 1411–1413. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Glo, F.O.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Andersen, K.S.; Kirkegaard, R.H.; Karst, S.M.; Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv 2018, 299537. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total Environ. 2018, 637–638, 1400–1412. [Google Scholar] [CrossRef]
- Douglas, G.M.; Beiko, R.G.; Langille, M.G.I. Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt2—Microbiome Analysis: Methods and Protocols; Beiko, R.G., Hsiao, W., Parkinson, J., Eds.; Springer: New York, NY, USA, 2018; pp. 169–177. ISBN 978-1-4939-8728-3. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; Mcdonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016, 44, D471–D480. [Google Scholar] [CrossRef]
- Imhoff, J.F. Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria BT—Anoxygenic Photosynthetic Bacteria; Blankenship, R.E., Madigan, M.T., Bauer, C.E., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 1–15. ISBN 978-0-306-47954-0. [Google Scholar]
- Najar, I.N.; Sherpa, M.T.; Das, S.; Das, S.; Thakur, N. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry. Sci. Total Environ. 2018, 637–638, 730–745. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, G.; Artacho, A.; Rojas, R.; Bautista, J.; Méndez, R.; Gamboa, M.; Gamboa, J.; Gómez-Cruz, R. Metagenomics of Bacterial Diversity in Villa Luz Caves with Sulfur Water Springs. Genes 2018, 9, 55. [Google Scholar] [CrossRef]
- Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L. Bacterial and Archaeal Phylogenetic Diversity of a Cold Sulfur-Rich Spring on the Shoreline of Lake Erie, Michigan. Appl. Environ. Microbiol. 2009, 75, 5025–5036. [Google Scholar] [CrossRef]
- Cole, J.K.; Peacock, J.P.; Dodsworth, J.A.; Williams, A.J.; Thompson, D.B.; Dong, H.; Wu, G.; Hedlund, B.P. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 2013, 7, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, B.B.; Findlay, A.J.; Pellerin, A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front. Microbiol. 2019, 10, 849. [Google Scholar] [CrossRef]
- Taskaeva, A.A.; Konakova, T.N.; Kolesnikova, A.A.; Kudrin, A.A.; Nakul, G.L. Communities of soil invertebrates near Iska-Shor hydrogen sulfide springs in the Adak Nature Reserve (Komi Republic). Russ. J. Ecol. 2021, 52, 76–83. [Google Scholar] [CrossRef]
- Caumette, P.; Guyoneaud, R.; Imhoff, J.F.; Süling, J.; Gorlenko, V. Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int. J. Syst. Evol. Microbiol. 2004, 54, 1031–1036. [Google Scholar] [CrossRef]
- Puchkova, N.N.; Imhoff, J.F.; Gorlenko, V.M. Thiocapsa litoralis sp. nov., a new purple sulfur bacterium from microbial mats from the White Sea. Int. J. Syst. Evol. Microbiol. 2000, 50, 1441–1447. [Google Scholar] [CrossRef]
- Huang, L.; Ye, J.; Jiang, K.; Wang, Y.; Li, Y. Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable hydrocarbon-degrading bacteria. Ecotoxicol. Environ. Saf. 2021, 225, 112740. [Google Scholar] [CrossRef]
- Rahul, K.; Azmatunnisa, M.; Sasikala, C.; Ramana, C.V. Hoeflea olei sp. nov., a diesel-oil-degrading, anoxygenic, phototrophic bacterium isolated from backwaters and emended description of the genus Hoeflea. Int. J. Syst. Evol. Microbiol. 2015, 65, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Margot, C.; Rhoads, W.; Gabrielli, M.; Olive, M.; Hammes, F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. npj Biofilms Microbiomes 2024, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Nour, M.; Duncan, C.; Low, D.E.; Guyard, C. Biofilms: The Stronghold of Legionella pneumophila. Int. J. Mol. Sci. 2013, 14, 21660–21675. [Google Scholar] [CrossRef] [PubMed]
- Bukhtiyarova, P.A.; Antsiferov, D.V.; Brasseur, G.; Avakyan, M.R.; Frank, Y.A.; Ikkert, O.P.; Pimenov, N.V.; Tuovinen, O.H.; Karnachuk, O.V. Isolation, characterization, and genome insights into an anaerobic sulfidogenic Tissierella bacterium from Cu-bearing coins. Anaerobe 2019, 56, 66–77. [Google Scholar] [CrossRef]
- Zhang, C.; Dang, H.; Azam, F.; Benner, R.; Legendre, L.; Passow, U.; Polimene, L.; Robinson, C.; Suttle, C.A.; Jiao, N. Evolving paradigms in biological carbon cycling in the ocean. Natl. Sci. Rev. 2018, 5, 481–499. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Iwaki, H.; Yasukawa, N.; Fujioka, M.; Takada, K.; Hasegawa, Y. Isolation and Characterization of a Marine Cyclohexylacetate-Degrading Bacterium Lutimaribacter litoralis sp. nov., and Reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov. Curr. Microbiol. 2013, 66, 588–593. [Google Scholar] [CrossRef]
- Rezaei Somee, M.; Dastgheib, S.M.M.; Shavandi, M.; Ghanbari Maman, L.; Kavousi, K.; Amoozegar, M.A.; Mehrshad, M. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 2021, 11, 11316. [Google Scholar] [CrossRef]
- Tank, M.; Blümel, M.; Imhoff, J.F. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol. Ecol. 2011, 78, 428–438. [Google Scholar] [CrossRef]
- Hahn, M.W.; Schmidt, J.; Asiyo, G.S.; Kyrpides, N.C.; Woyke, T.; Whitman, W.B. Reclassification of a Polynucleobacter cosmopolitanus strain isolated from tropical Lake Victoria as Polynucleobacter victoriensis sp. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 5087–5093. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Maruyama, A.; Imura, S.; Takeyama, H.; Naganuma, T. Comparative Phylogenetic Analyses of Halomonas variabilis and Related Organisms Based on 16S rRNA, gyrB and ectBC Gene Sequences. Syst. Appl. Microbiol. 2004, 27, 323–333. [Google Scholar] [CrossRef]
- Sorokina, A.Y.; Chernousova, E.Y.; Dubinina, G.A. Hoeflea siderophila sp. nov., a new neutrophilic iron-oxidizing bacterium. Microbiology 2012, 81, 59–66. [Google Scholar] [CrossRef]
- González, J.M.; Covert, J.S.; Whitman, W.B.; Henriksen, J.R.; Mayer, F.; Scharf, B.; Schmitt, R.; Buchan, A.; Fuhrman, J.A.; Kiene, R.P.; et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. Syst. Evol. Microbiol. 2003, 53, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Podosokorskaya, O.A.; Kadnikov, V.V.; Gavrilov, S.N.; Mardanov, A.V.; Merkel, A.Y.; Karnachuk, O.V.; Ravin, N.V.; Bonch-Osmolovskaya, E.A.; Kublanov, I.V. Characterization of Elioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Gnavibacteria, and a proposal of a novel bacterial phylum gnavibacteriae. Environ. Microbiol. 2013, 15, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Falkenby, L.G.; Szymanska, M.; Holkenbrink, C.; Habicht, K.S.; Andersen, J.S.; Miller, M.; Frigaard, N.-U. Quantitative proteomics of Chlorobaculum tepidum: Insights into the sulfur metabolism of a phototrophic green sulfur bacterium. FEMS Microbiol. Lett. 2011, 323, 142–150. [Google Scholar] [CrossRef]
- Qing-lei, S.; Ke, X.; Lei, C.; Zengfeng, D.; Minxiao, W.; Li, S. Nitrogen and sulfur cycling driven by Campylobacterota in the sediment–water interface of deep-sea cold seep: A case in the South China Sea. MBio 2023, 14, e00117-23. [Google Scholar] [CrossRef]
- Watanabe, T.; Kojima, H.; Umezawa, K.; Hori, C.; Takasuka, T.E.; Kato, Y.; Fukui, M. Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera. Front. Microbiol. 2019, 10, 316. [Google Scholar] [CrossRef]
- Frigaard, N.-U.; Dahl, C. Sulfur Metabolism in Phototrophic Sulfur Bacteria; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2008; Volume 54, pp. 103–200. ISBN 0065-2911. [Google Scholar]
- Koo, H.; Mojib, N.; Hakim, J.A.; Hawes, I.; Tanabe, Y.; Andersen, D.T.; Bej, A.K. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica. Front. Microbiol. 2017, 8, 1347. [Google Scholar] [CrossRef]
- Chernitsyna, S.; Elovskaya, I.; Pogodaeva, T.; Bukin, S.; Zakharenko, A.; Zemskaya, T. Bacterial Communities in a Gradient of Abiotic Factors Near a Sulfide Thermal Spring in Northern Baikal. Diversity 2023, 15, 298. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt. Int. J. Hydrogen Energy 2021, 46, 3716–3725. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, L.; Xue, S.; Liu, B.; Jin, G. The recruitment of bacterial communities by the plant root system changed by acid mine drainage pollution in soils. FEMS Microbiol. Lett. 2020, 367, fnaa117. [Google Scholar] [CrossRef] [PubMed]
- Odhiambo, K.A.; Ogola, H.J.O.; Onyango, B.; Tekere, M.; Ijoma, G.N. Contribution of pollution gradient to the sediment microbiome and potential pathogens in urban streams draining into Lake Victoria (Kenya). Environ. Sci. Pollut. Res. 2022, 30, 36450–36471. [Google Scholar] [CrossRef] [PubMed]
- Paredes, G.F.; Viehboeck, T.; Lee, R.; Palatinszky, M.; Mausz, M.A.; Reipert, S.; Schintlmeister, A.; Maier, A.; Volland, J.-M.; Hirschfeld, C.; et al. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Garritano, A.N.; Song, W.; Thomas, T. Carbon fixation pathways across the bacterial and archaeal tree of life. PNAS Nexus 2022, 1, pgac226. [Google Scholar] [CrossRef]
- Huang, J.; Chen, P.; Zhu, Y.; Wang, J.; Song, L.; Han, X.; Huang, Y. Biogeography and potential ecological functions of prokaryotes in the hydrothermal and non-hydrothermal field sediments of the Indian Ocean Ridges. Front. Mar. Sci. 2023, 9, 1072569. [Google Scholar] [CrossRef]
- Schorn, S.; Graf, J.S.; Littmann, S.; Hach, P.F.; Lavik, G.; Speth, D.R.; Schubert, C.J.; Kuypers, M.M.M.; Milucka, J. Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility. Nat. Commun. 2024, 15, 5293. [Google Scholar] [CrossRef]
- Petushkova, E.; Khasimov, M.; Mayorova, E.; Delegan, Y.; Frantsuzova, E.; Bogun, A.; Galkina, E.; Tsygankov, A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024, 12, 391. [Google Scholar] [CrossRef]
- Shao, M.-F.; Zhang, T.; Fang, H.H.-P. Sulfur-driven autotrophic denitrification: Diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol. 2010, 88, 1027–1042. [Google Scholar] [CrossRef]
- Yang, M.; Luo, Q.; Fan, Z.; Zeng, F.; Huang, L.; Ding, S.; Cui, G.; Li, D.; Wei, G.; Liu, C.-Q.; et al. Metagenomics and Stable Isotopes Uncover the Augmented Sulfide-Driven Autotrophic Denitrification in a Seasonally Hypoxic, Sulfate-Abundant Reservoir. Environ. Sci. Technol. 2024, 58, 14225–14236. [Google Scholar] [CrossRef]
- Lee, D.-J.; Wong, B.-T. Denitrifying sulfide removal and nitrososulfide complex: Azoarcus sp. NSC3 and Pseudomonas sp. CRS1 mix. Bioresour. Technol. 2014, 166, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Huang, H.; Chen, Y.; Xiong, J.; Lin, Z.; Wang, S. Optimizing Nitrogen Removal Through Coupled Simultaneous Nitrification-Denitrification and Sulfur Autotrophic Denitrification: Microbial Community Dynamics and Functional Pathways in Mariculture Tailwater Treatment. Water 2025, 17, 683. [Google Scholar] [CrossRef]
- Callbeck, C.M.; Canfield, D.E.; Kuypers, M.M.M.; Yilmaz, P.; Lavik, G.; Thamdrup, B.; Schubert, C.J.; Bristow, L.A. Sulfur cycling in oceanic oxygen minimum zones. Limnol. Oceanogr. 2021, 66, 2360–2392. [Google Scholar] [CrossRef]
- Knief, C.; Dunfield, P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 2005, 7, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Twible, L.E.; Whaley-Martin, K.; Chen, L.-X.; Colenbrander Nelson, T.; Arrey, J.L.S.; Jarolimek, C.V.; King, J.J.; Ramilo, L.; Sonnenberg, H.; Banfield, J.F.; et al. pH and thiosulfate dependent microbial sulfur oxidation strategies across diverse environments. Front. Microbiol. 2024, 15, 1426584. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Zhang, W.; Chen, X.; Huang, Q.; Wang, H.; Li, S. Insights into the Nitrogen Removal Mechanism of Heterotrophic Nitrification and Aerobic Denitrification Bacterium Delfitia sp. B7. Water 2024, 16, 3042. [Google Scholar] [CrossRef]
- Agafonova, N.V.; Doronina, N.V.; Kaparullina, E.N.; Fedorov, D.N.; Gafarov, A.B.; Sazonova, O.I.; Sokolov, S.L.; Trotsenko, Y.A. A novel Delftia plant symbiont capable of autotrophic methylotrophy. Microbiology 2017, 86, 96–105. [Google Scholar] [CrossRef]
- Zhiqiu, Y.; Xinbei, L.; Chengqian, Q.; Li, S.; Shiqi, P.; Jianing, L.; Wei, L.; Weiwei, H.; Shiyu, C.; Chengkai, Z.; et al. Pan-Genome Analysis of Delftia tsuruhatensis Reveals Important Traits Concerning the Genetic Diversity, Pathogenicity, and Biotechnological Properties of the Species. Microbiol. Spectr. 2022, 10, e02072-21. [Google Scholar] [CrossRef]
- Roy, S.; Roy, M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil. Int. J. Phytoremediation 2019, 21, 531–540. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, J.; Abedin, M.M.; Sahoo, D.; Pandey, A.; Rai, A.K.; Singh, S.P. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol. 2020, 20, 246. [Google Scholar] [CrossRef] [PubMed]
Sediment (mg/kg) | Water (mg/L) | p-Value | |
---|---|---|---|
Physicochemical parameters | |||
pH | 8.6 ± 0.69 | 8.1 ± 0.52 | 0.3363 |
Temperature (oC) | 16.6 ± 0.82 | 17.3 ± 1.04 | 0.0985 |
Salinity | 5.0 ± 0.32 | 3.0 ± 0.08 | <0.001 *** |
Alkalinity | 518 ± 36 | 384 ± 21 | 0.0052 ** |
Total solids (TS) | 3470 ± 68 | 1958 ± 134 | <0.001 *** |
Soluble solids (SS) | 44 ± 3.29 | 88 ± 4.56 | 0.0002 *** |
Total dissolved solids (TDS) | 3424 ± 57 | 1879 ± 125 | <0.0001 *** |
Dissolved oxygen (DO) | 0.0 | 0.27 ± 0.107 | 0.0025 ** |
NH4+ | 8.8 ± 1.77 | 1.56 ± 0.94 | 0.0034 ** |
NO3− | 3.3 ± 0.23 | 0.71 ± 0.26 | 0.0002 *** |
NO2− | 0.63 ± 0.06 | 0.46 ± 0.13 | 0.1221 |
Cl− | 1192 ± 39 | 686.36 ± 59 | 0.0002 *** |
SO42− | 139 ± 11 | 77 ± 6.71 | 0.0013 ** |
SO32− | 1.72 ± 0.33 | 0.34 ± 0.16 | 0.0031 ** |
H2S | 4.98 ± 2.05 | 15.3 ± 3.16 | 0.0154 * |
Trace metals and metalloids | |||
As | 7.52 ± 0.49 | 25 ± 3.71 | 0.0012 ** |
Ca | 11,196 ± 38 | 11,478 ± 94 | 0.0086 |
Cd | 49 ± 2.69 | 33 ± 5.43 | 0.0096 ** |
Co | 46 ± 8.97 | 26 ± 4.50 | 0.0258* |
Cr | 162 ± 123 | 49 ± 1.39 | 0.1878 |
Cu | 53 ± 7.72 | 25 ± 3.02 | 0.004 ** |
Fe | 24,093 ± 1312 | 190 ± 16 | 0 *** |
Mg | 8775 ± 476 | 14,767 ± 579 | 0.0002 *** |
Mn | 7109 ± 497 | 50 ± 4.54 | 0 *** |
Mo | 38 ± 3.19 | 68 ± 82.06 | 0.5644 |
Ni | 145 ± 16.85 | 33 ± 5.39 | 0.0004 *** |
Pb | 20 ± 12.60 | 15 ± 3.21 | 0.5833 |
Se | 5.9 ± 3.21 | 51 ± 7.77 | 0.0007 *** |
Zn | 184 ± 39 | 17 ± 5.40 | 0.0018 ** |
Parameter | Water | Sediment |
---|---|---|
Quality filtered reads classified | 27,565 | 28,451 |
Unique ASVs | 291 | 1094 |
Shannon | 1.86 | 5.25 |
Simpson | 0.73 | 0.98 |
invSimpson | 3.66 | 41.8 |
ACE | 396.2 | 1204.2 |
Chao1 | 403.0 | 1199.0 |
Good’s coverage (%) | 99.34 | 99.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogola, H.J.O.; Selvarajan, R.; Ncube, S.; Madikizela, L. Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa. Biology 2025, 14, 503. https://doi.org/10.3390/biology14050503
Ogola HJO, Selvarajan R, Ncube S, Madikizela L. Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa. Biology. 2025; 14(5):503. https://doi.org/10.3390/biology14050503
Chicago/Turabian StyleOgola, Henry Joseph Oduor, Ramganesh Selvarajan, Somandla Ncube, and Lawrence Madikizela. 2025. "Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa" Biology 14, no. 5: 503. https://doi.org/10.3390/biology14050503
APA StyleOgola, H. J. O., Selvarajan, R., Ncube, S., & Madikizela, L. (2025). Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa. Biology, 14(5), 503. https://doi.org/10.3390/biology14050503