water-logo

Journal Browser

Journal Browser

Algae-Based Technology for Wastewater Treatment

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 503

Special Issue Editors


E-Mail Website
Guest Editor
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
Interests: MBR; membrane fouling; bacterial–microalgal consortium; mariculture wastewater treatment; microalgae bioenergy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
Interests: industrial wastewater treatment; algal-bacterial symbiosis system; biological denitrification; refractory organics; wastewater of low C/N ratio; nutrient recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the rapid development of emerging industries, such as new energy batteries, semiconductors and silicon chips, the volume of waste and contaminants related to the production of polymer materials, mining and mineral processing has increased. As a result, wastewater containing refractory organics and unbalanced metal ions and nutrient elements (N, P and S) has caused new environmental issues, thus challenging the conventional biological treatment process. Fortunately, algae offers hope for unconventional wastewater treatment, overcoming unbalanced nutrient conditions and enabling carbon reduction and nutrient recovery. In recent years, algae-based technology has attracted increasing attention in the field of unconventional wastewater treatment.

This Special Issue of Water offers a platform for the publication of innovative original articles and reviews regarding wastewater treatment and resource recovery based on algae and microorganisms. The scope of this Special Issue includes, but is not limited to, treatment techniques for refractory organics, metal ions and nutrient elements, and the recovery of valuable biomass, metals and nutrients. Offering low contamination and consumption, algae-based technology could contribute to a more efficient circular economy and a healthier water industry.

Dr. Binghan Xie
Dr. Mengqi Zheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • algae
  • unbalanced nutrient
  • emerging contaminants
  • refractory organics
  • metal ions
  • resource recovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3631 KiB  
Article
The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution
by Lingjie Li, Xiankun Qu, Weijia Gong, Lin Guo, Binghan Xie, Weirun Li, Guoyu Zhang, Haili Tan, Yuhong Jia, Jiahao Liang and Mengqi Zheng
Water 2025, 17(8), 1127; https://doi.org/10.3390/w17081127 - 10 Apr 2025
Viewed by 274
Abstract
Mariculture wastewater is an intractable wastewater, owing to its high salinity inhibiting microbial metabolism. The biocarrier bacterial–microbial consortium (BBM) and bacterial–microbial consortium (BM) were developed to investigate the mechanism of pollutant degradation and microbial community evolution. The BBM exhibited excellent mariculture wastewater treatment, [...] Read more.
Mariculture wastewater is an intractable wastewater, owing to its high salinity inhibiting microbial metabolism. The biocarrier bacterial–microbial consortium (BBM) and bacterial–microbial consortium (BM) were developed to investigate the mechanism of pollutant degradation and microbial community evolution. The BBM exhibited excellent mariculture wastewater treatment, with the highest removal for TOC (91.78%), NH4+-N (79.33%) and PO43−-P (61.27%). Biocarriers accelerated anaerobic region formation, with the levels of denitrifying bacteria accumulation improving nitrogen degradation in the BBM. Moreover, the biocarrier enhanced the production of soluble microbial products (SMPs) (11.53 mg/L) and extracellular polymeric substances (EPSs) (370.88 mg/L), which accelerated the formation of bacterial and microalgal flocs in the BBM. The fluorescence excitation–emission matrix (EEM) results demonstrated that the addition of biocarriers successfully decreased the production of aromatic-like components in anoxic and aerobic supernatants. Additionally, the biocarrier shifted the bacterial community constitutions significantly. Biocarriers provided an anoxic microenvironment, which enhanced enrichments of Rhodobacteraceae (66%) and Ruegeria (70%), with a satisfying denitrification in the BBM. This study provided a novel biocarrier addition to the BBM system for actual mariculture wastewater treatment. Full article
(This article belongs to the Special Issue Algae-Based Technology for Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop