Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = cosmetic dermatology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 640 KiB  
Short Note
Bis(4-((E)-3,5–Diacetoxystyryl)phenyl)nonanedioate
by Claudia Sciacca, Giulia Maria Grasso, Nunzio Cardullo and Vera Muccilli
Molbank 2025, 2025(3), M2044; https://doi.org/10.3390/M2044 - 5 Aug 2025
Abstract
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics [...] Read more.
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics for its tyrosinase inhibition activity and for cutaneous hyperpigmentation disorders. In this work, we report a concise chemoenzymatic procedure for the synthesis of a novel hybrid molecule combining acetylated resveratrol and azelaic acid. This methodology offers a valuable route for the development of new bioactive compounds for potential cosmetic and dermatological applications. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

11 pages, 1507 KiB  
Article
Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness
by Kyoko Kanai, Kazal Boron Biswas, Asuka Hirasawa, Misaki Futamura, Kiyotaka Tanaka and Kotaro Sakamoto
Cosmetics 2025, 12(4), 163; https://doi.org/10.3390/cosmetics12040163 - 4 Aug 2025
Viewed by 174
Abstract
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and [...] Read more.
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and their receptor (receptor for AGEs [RAGE]) as contributing factors to skin dullness. AGEs themselves have a yellowish hue, contributing to “yellow dullness.” Additionally, AGE–RAGE signaling promotes melanin production in melanocytes and impairs keratinocyte differentiation as a result of inflammation. Therefore, regulating the AGE–RAGE interaction may help reduce skin dullness. Through screening various natural ingredients, we found that peony root extract (PRE) inhibits AGE formation and blocks AGE–RAGE binding. Furthermore, the presence of PRE leads to the suppression of AGE-induced melanin production in melanocytes and the restoration of impaired keratinocyte differentiation in glycated basement membrane components. In a human clinical study, topical application of a 1% PRE-containing lotion for 2 weeks significantly reduced melanin content, with a trend toward decreased AGE accumulation and visible spots on the cheeks. These findings support the potential of PRE as a multifunctional cosmetic ingredient that comprehensively addresses skin dullness by modulating the AGE–RAGE interaction. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

20 pages, 954 KiB  
Review
Artificial Intelligence in Cosmetic Formulation: Predictive Modeling for Safety, Tolerability, and Regulatory Perspectives
by Antonio Di Guardo, Federica Trovato, Carmen Cantisani, Annunziata Dattola, Steven P. Nisticò, Giovanni Pellacani and Alessia Paganelli
Cosmetics 2025, 12(4), 157; https://doi.org/10.3390/cosmetics12040157 - 24 Jul 2025
Viewed by 744
Abstract
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, [...] Read more.
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, fragrances, preservatives, antioxidants, and prebiotics. These technologies are employed to forecast critical properties such as texture, stability, and shelf-life, optimizing both product performance and user experience. The integration of computational toxicology and ML algorithms also allows for early prediction of skin sensitization risks, including the likelihood of adverse events such as allergic contact dermatitis. Furthermore, AI models can support efficacy assessment, bridging formulation science with dermatological outcomes. The article also addresses the ethical, regulatory, and safety challenges associated with AI in cosmetic science, underlining the need for transparency, accountability, and harmonized standards. The potential of AI to reshape dermocosmetic innovation is vast, but it must be approached with robust oversight and a commitment to user well-being. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

15 pages, 1669 KiB  
Article
Prospective Evaluation of a Thermogenic Topical Cream-Gel Containing Caffeine, Genistein, and Botanical Extracts for the Treatment of Moderate to Severe Cellulite
by Vittoria Giulia Bianchi, Matteo Riccardo Di Nicola, Anna Cerullo, Giovanni Paolino and Santo Raffaele Mercuri
Cosmetics 2025, 12(4), 155; https://doi.org/10.3390/cosmetics12040155 - 21 Jul 2025
Viewed by 842
Abstract
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a [...] Read more.
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a high demand for effective, non-invasive, and well-tolerated treatment options. This single-centre, in vivo, prospective study evaluated the efficacy of a non-pharmacological, thermogenic topical cream-gel combined with manual massage in women with symmetrical grade II or III cellulite (Nürnberger–Müller scale). A total of 56 female participants (aged 18–55 years) were enrolled and instructed to apply the product twice daily for eight weeks to the thighs and buttocks. Efficacy was assessed using instrumental skin profilometry (ANTERA® 3D CS imaging system), dermatological clinical grading, and patient self-assessment questionnaires. Quantitative analysis showed a mean reduction of 23.5% in skin indentation volume (p < 0.01) and a mean decrease of 1.1 points on the cellulite severity scale by week 8. Patient-reported outcomes revealed 85.7% satisfaction with visible results and 91% satisfaction with product texture and ease of application. Dermatological evaluation confirmed no clinically significant adverse reactions, and only 3.5% of participants reported mild and transient skin sensitivity. These findings suggest that this topical cream-gel formulation, when used in conjunction with manual massage, represents a well-tolerated and non-invasive option for the cosmetic improvement of moderate to severe cellulite. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

12 pages, 874 KiB  
Article
Open-Label Uncontrolled, Monocentric Study to Evaluate the Efficacy and Safety of the Electromagnetic Field and Negative Pressure in the Treatment of Cellulite
by Antonio Scarano, Antonio Calopresti, Salvatore Marafioti, Gianluca Nicolai and Erda Qorri
Life 2025, 15(7), 1148; https://doi.org/10.3390/life15071148 - 21 Jul 2025
Viewed by 453
Abstract
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in [...] Read more.
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in the skin that affects the epidermis, dermis, hypodermis and subcutaneous fat in different ways. The aim of the present prospective study research was to evaluate the efficacy of electromagnetic field and negative pressure in the treatment of cellulite. Methods: A total of 35 women with an average age of 40, ranging from 18 to 50 (mean 32.2 ± 7.48), with a body mass index between 18.5 and 26.9 (mean 22 ± 3.01), were enrolled in this study. The degree of cellulite of the patients was assessed clinically using the Cellulite Severity Scale (CSS) and Nürnberger–Müller classification. All patients received one session per week for a total 12 treatment sessions with Bi-one® LifeTouchTherapy medical device (Expo Italia Srl—Florence—Italy), which generates a combination of vacuum and electromagnetic fields (V-EMF). Total treatment time was approximately 20–30 min per patient. The GAIS score, Cellulite Severity Scale (CSS) and Nürnberger–Müller classification for cellulite was evaluated 1 month after the 12 treatments with LifeTouchTherapy. Results: A statistical difference was recorded in cellulite improvement by visual analog scale (VAS) and global aesthetic improvement scale (GAIS). Conclusions: The results of the present prospective clinical study show the efficacy and safety of Bi-one® LifeTouchTherapy in the treatment of cellulite. Electromagnetic fields combined with negative pressure therapy promote tissue regeneration and reduce fibrosis, which results in visible cosmetic improvements of cellulite. Full article
(This article belongs to the Collection Clinical Trials)
Show Figures

Figure 1

34 pages, 2026 KiB  
Review
Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials
by James Curtis Dring, Matthew Kaczynski, Rina Maria Zureikat, Michael Kaczynski, Alicja Forma and Jacek Baj
Int. J. Mol. Sci. 2025, 26(14), 6821; https://doi.org/10.3390/ijms26146821 - 16 Jul 2025
Viewed by 499
Abstract
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, [...] Read more.
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, wound healing, acne management, and cosmetic dermatology. Zeolites demonstrated broad-spectrum antibacterial and antifungal efficacy, enhanced antioxidant activity, and biocompatible drug delivery in various dermatological models. Formulations such as silver–sulfadiazine–zeolite composites, Zn–clinoptilolite for acne, and zeolite-integrated microneedles offer innovative avenues for targeted therapy. Zeolite-based systems represent a promising shift toward multifunctional, localized dermatologic treatments. However, further research into long-term safety, formulation optimization, and clinical validation is essential to transition these materials into mainstream therapeutic use. Full article
Show Figures

Figure 1

23 pages, 3707 KiB  
Article
Structural and Functional Profiling of Water-Extracted Polypeptides from Periplaneta americana: A Multifunctional Cosmetic Bioactive Agent with Antioxidative and Anti-Inflammatory Properties
by Xinyu Sun, Zhengyang Zhang, Jingyao Qu, Deyun Yao, Zeyuan Sun, Jingyi Zhou, Jiayuan Xie, Mingyang Zhou, Xiaodeng Yang and Ling Wang
Molecules 2025, 30(14), 2901; https://doi.org/10.3390/molecules30142901 - 9 Jul 2025
Viewed by 467
Abstract
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which [...] Read more.
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which were below 1000 Da, predominantly consisting of tri-, tetra-, and octapeptides. Monosaccharide profiling detected D-(+)-galactose, and quantitative assays determined the contents of total phenolics (12.28 mg/g), flavonoids (15.50 mg/g), proteins (85.84 mg/g), and total sugars (17.62 mg/g). The biological activities of the extract were systematically evaluated. The peptide fraction inhibited hyaluronidase activity by 58% at 5 mg/mL, suggesting protection of extracellular matrix integrity. In HaCaT keratinocytes, it promoted cell proliferation by 62.6%, accelerated scratch wound closure by 54%, upregulated Wnt-10b and β-catenin expression, and reduced intracellular ROS levels under oxidative stress. In LPS-stimulated RAW 264.7 macrophages, the extract decreased TNF-α, IL-6, and IL-1β production by 30%, 25%, and 28%, respectively, reduced MDA levels by 35.2%, and enhanced CAT and SOD activities by 12.3% and 60.3%. In vivo, complete closure of full-thickness skin wounds in mice was achieved by day 14. Safety evaluations using the chick chorioallantoic membrane assay and human patch tests confirmed the extract to be non-irritating and non-toxic. These findings highlight Periplaneta americana extract as a promising multifunctional bioactive ingredient for cosmetic and dermatological applications. Further studies on its active components, mechanisms of action, and clinical efficacy are warranted to support its development in skin health and aesthetic medicine. Full article
Show Figures

Figure 1

24 pages, 886 KiB  
Review
Cosmeceutical and Dermatological Potential of Olive Mill Wastewater: A Sustainable and Eco-Friendly Source of Natural Ingredients
by Adriana Albini, Paola Corradino, Danilo Morelli, Francesca Albini and Douglas Noonan
Cosmetics 2025, 12(4), 142; https://doi.org/10.3390/cosmetics12040142 - 3 Jul 2025
Viewed by 1788
Abstract
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. [...] Read more.
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. Key polyphenols such as hydroxytyrosol, oleuropein, and tyrosol exhibit potent antioxidant, anti-inflammatory, antimicrobial, and photoprotective effects. These compounds mitigate oxidative stress, prevent collagen degradation, modulate NF-κB and MAPK signaling, and promote cellular repair and regeneration. Skin health is increasingly recognized as crucial to overall well-being, driving interest in cosmeceuticals that combine cosmetic benefits with dermatological activity. This review examines the cosmeceutical and dermatological potential of OMWW, highlighting its incorporation into innovative topical formulations like oil-in-water nanoemulsions, liposomes, and microneedles that enhance skin penetration and bioavailability. Additionally, OMWW fractions have shown selective antiproliferative effects on melanoma cells, suggesting potential for skin cancer prevention. Valorization of OMWW through biorefinery processes aligns with circular-economy principles, converting agro-industrial waste into sustainable cosmeceutical ingredients. This approach not only meets consumer demand for natural, effective products, but also reduces the ecological footprint of olive oil production, offering a scalable, eco-friendly strategy for next-generation dermatological applications. Full article
Show Figures

Figure 1

26 pages, 857 KiB  
Review
Officinal Plants as New Frontiers of Cosmetic Ingredients
by Annabella Vitalone, Lucia D’Andrea, Antonella Di Sotto, Alessandra Caruso and Rita Parente
Cosmetics 2025, 12(4), 140; https://doi.org/10.3390/cosmetics12040140 - 3 Jul 2025
Viewed by 888
Abstract
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores [...] Read more.
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores a curated selection of medicinal plants widely used or emerging in dermocosmetics, highlighting their phytochemical composition, mechanisms of action, and experimental support. A narrative literature review was conducted using databases such as PubMed and Scopus, targeting studies on topical cosmetic applications. Results show that many officinal plants, including Camellia sinensis, Panax ginseng, and Mentha piperita, offer antioxidant, anti-inflammatory, antimicrobial, photoprotective, and anti-aging benefits. Less conventional species, such as Drosera ramentacea and Kigelia africana, demonstrated depigmenting and wound-healing potential. In particular, bioactive constituents like flavonoids, iridoids, saponins, and polyphenols act on key skin targets such as COX-2, MMPs, tyrosinase, and the Nrf2 pathway. These findings underscore the potential of botanical extracts to serve as effective, natural, and multifunctional agents in modern skincare. While only Mentha piperita is currently recognized as a traditional herbal medicinal product for dermatological use, this research supports the broader dermocosmetic integration of these species. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

35 pages, 5123 KiB  
Review
Prebiotic Oligosaccharides in Skin Health: Benefits, Mechanisms, and Cosmetic Applications
by Meijun Zeng, Yang Li, Jie Cheng, Jingyu Wang and Qiyu Liu
Antioxidants 2025, 14(6), 754; https://doi.org/10.3390/antiox14060754 - 18 Jun 2025
Cited by 2 | Viewed by 1409
Abstract
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic [...] Read more.
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic oligosaccharides, including well-established prebiotics (e.g., human milk oligosaccharides, galacto- and fructo-oligosaccharides) and emerging prebiotic candidates (e.g., gluco-oligosaccharides, chitosan-oligosaccharides, agaro-oligosaccharides). First, cutting-edge synthetic processes for producing diverse oligosaccharides and their structural chemistry are introduced. Then, we discuss in vitro studies demonstrating their efficacy in promoting skin commensals, inhibiting pathogens, and conferring protective effects, such as antioxidant, anti-inflammatory, anti-melanogenic, and wound-healing properties. Furthermore, we emphasize in vivo animal studies and clinical trials revealing that prebiotic oligosaccharides, administered orally or topically, alleviate atopic dermatitis, enhance skin hydration, attenuate acne, and protect against photo-aging by modulating skin–gut microbiota and immune responses. Mechanistically, we integrate genetic and molecular insights to elucidate how oligosaccharides mediate these benefits, including gut–skin axis crosstalk, immune regulation, and microbial metabolite signaling. Finally, we highlight current commercial applications of oligosaccharides in cosmetic formulations while addressing scientific and practical challenges, such as structure–function relationships, clinical scalability, and regulatory considerations. This review bridges mechanistic understanding with practical applications, offering a comprehensive resource for advancing prebiotic oligosaccharides-based skincare therapies. Full article
Show Figures

Figure 1

20 pages, 1267 KiB  
Article
Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts
by Lejsa Jakupović, Jakub W. Strawa, Laura Nižić Nodilo, Marijan Marijan, Anita Hafner, Katarzyna Jakimiuk, Monika Tomczykowa, Michał Tomczyk and Marijana Zovko Končić
Molecules 2025, 30(12), 2638; https://doi.org/10.3390/molecules30122638 - 18 Jun 2025
Viewed by 519
Abstract
Satureja montana L. (winter savory, family Lamiaceae) is an aromatic herb that is widespread throughout the Mediterranean region. In a prior study, the optimization of the green hydroxypropyl-β-cyclodextrin (HP-β-CD)-glycerol-assisted extraction procedure of S. montana was performed. As a result, [...] Read more.
Satureja montana L. (winter savory, family Lamiaceae) is an aromatic herb that is widespread throughout the Mediterranean region. In a prior study, the optimization of the green hydroxypropyl-β-cyclodextrin (HP-β-CD)-glycerol-assisted extraction procedure of S. montana was performed. As a result, four extracts abundant in total phenols (OPT-TP), total phenolic acids including rosmarinic acid (OPT-TPA-RA), total flavonoids (OPT-TF), and luteolin derivatives (OPT-LG) showing anti-elastase and anti-hyaluronidase properties, were prepared. Subsequently, we further explored the phytochemical, dermatological, and cosmeceutical potentials of these extracts, evaluating their antioxidant, anti-inflammatory, anti-tyrosinase, and anti-ultraviolet (UV) absorption activities. Furthermore, the biocompatibility of the extracts and their wound-healing properties were assessed using HaCaT cells. The results indicate that the extracts exhibited excellent antioxidant and cosmeceutical activities, which surpassed the activities of the employed standards in several assays (DPPH antiradical activity, β-carotene-linoleic acid, anti-lipoxygenase, anti-heat-induced ovalbumin coagulation, and UV absorbance assays). Furthermore, the extracts preserved more than 80% of the HaCaT cell viability at concentrations up to 62.5 µL extract/mL and also enhanced wound healing in the in vitro scratch wound-healing model. For example, the application of OPT-TP and OPT-TF led to 48.6% ± 3.3% and 48.6% ± 5.4% wound closure, respectively, after 48 h, compared to 34.8% ± 2.3% in the control group. The extracts exhibited excellent bioactivities, making them promising candidates for the development of cosmeceutical products, while their high biocompatibility indicates that they are suitable for direct application in cosmetics without prior solvent removal. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

24 pages, 2342 KiB  
Article
Topically Applied Molecular Hydrogen Normalizes Skin Parameters Associated with Oxidative Stress: A Pilot Study
by Natalia Debkowska, Marek Niczyporuk, Arkadiusz Surazynski and Katarzyna Wolosik
Antioxidants 2025, 14(6), 729; https://doi.org/10.3390/antiox14060729 - 14 Jun 2025
Viewed by 1549
Abstract
Topical application of molecular hydrogen (H2) has recently emerged as a promising strategy to counteract oxidative stress-related skin damage. This pilot clinical study aimed to assess the efficacy of hydrogen-rich water treatments in improving objective skin parameters in healthy adults. The [...] Read more.
Topical application of molecular hydrogen (H2) has recently emerged as a promising strategy to counteract oxidative stress-related skin damage. This pilot clinical study aimed to assess the efficacy of hydrogen-rich water treatments in improving objective skin parameters in healthy adults. The hypothesis was that H2, through its selective antioxidant and anti-inflammatory properties, would reduce oxidative stress, modulate inflammatory pathways, and enhance skin barrier integrity, leading to measurable improvements in skin appearance. Fifteen participants received topical treatments with hydrogen-rich water for four weeks. Skin parameters, including porphyrin levels, pigmentation irregularities, pore size, wrinkle severity, and biological skin age, were quantitatively assessed before and one week post-treatment. A statistically significant reduction in pore visibility was observed, particularly in younger participants. Although porphyrin levels showed a trend toward reduction, this change was not statistically significant. Improvements were also noted in pigmentation, wrinkle severity, and estimated biological skin age. The treatment was well tolerated, with no adverse effects reported. Despite promising outcomes, this study was limited by the absence of a control group and a relatively short follow-up period. Further controlled studies with larger sample sizes and molecular biomarker analyses are needed to confirm these effects and elucidate the underlying mechanisms. This study addresses a gap in the literature regarding standardized, clinical evaluation of topical H2 application and highlights its potential for utilization in cosmetic and preventive dermatology. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

15 pages, 18796 KiB  
Article
Study of the Repair Action and Mechanisms of a Moisturizing Cream on an SLS-Damaged Skin Model Using Two-Photon Microscopy
by Yixin Shen, Ying Ye, Lina Wang, Huiping Hu, Caixia Wang, Yuxuan Wu, Dingqiao Lin, Jiaqi Shen, Hong Zhang, Yanan Li and Peiwen Sun
Cosmetics 2025, 12(3), 119; https://doi.org/10.3390/cosmetics12030119 - 10 Jun 2025
Viewed by 1012
Abstract
This study evaluates the efficacy of a novel moisturizing cream using a sodium lauryl sulfate (SLS)-induced skin damage model, supported by advanced imaging with two-photon microscopy (TPM). TPM’s capabilities allow for in-depth, non-invasive visualization of skin repair processes, surpassing traditional imaging methods. The [...] Read more.
This study evaluates the efficacy of a novel moisturizing cream using a sodium lauryl sulfate (SLS)-induced skin damage model, supported by advanced imaging with two-photon microscopy (TPM). TPM’s capabilities allow for in-depth, non-invasive visualization of skin repair processes, surpassing traditional imaging methods. The innovative formulation of the cream includes ceramide NP, ceramide NS, ceramide AP, lactobacillus/soybean ferment extract, and bacillus ferment, targeting the enhancement of skin hydration, barrier function, and structural integrity. In SLS-stimulated 3D skin models and clinical settings, the cream significantly improved the expression of key barrier proteins such as filaggrin (FLG), loricrin (LOR), and transglutaminase 1 (TGM1), while reducing inflammatory markers like IL-1α, TNF-α, and PGE2. Notably, the cream facilitated a significant increase in epidermal thickness and improved the dermal–epidermal junction index (DEJI), as observed through TPM, indicating profound skin repair and enhanced barrier functionality. Clinical trials further demonstrated the cream’s reparative effects, significantly reducing symptoms in participants with sensitive skin and post-intense pulsed light (IPL) treatment scenarios. This study highlights the utility of TPM as a groundbreaking tool in cosmetic dermatology, offering real-time analysis of the effects of skincare products on skin structure and function. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

29 pages, 7587 KiB  
Article
Considerations Regarding the Cytotoxicity of Certain Classes of Fungal Polyketides—Potential Raw Materials for Skincare Products for Healthy and Diseased Skin
by Daniela Albisoru, Nicoleta Radu, Raluca Senin, Mihai Dan Caramihai, Mihaela Begea, Oksana Mulesa, Viviana Roman and Marinela Bostan
Pharmaceutics 2025, 17(6), 759; https://doi.org/10.3390/pharmaceutics17060759 - 9 Jun 2025
Viewed by 499
Abstract
Background: This study investigates the cytotoxicity of microbial polyketides biosynthesized by Monascus species through both in silico and in vitro approaches. Methods: Six main know Monascus-derived polyketides were analysed in silico an an vitro. Results: In silico tests reveal [...] Read more.
Background: This study investigates the cytotoxicity of microbial polyketides biosynthesized by Monascus species through both in silico and in vitro approaches. Methods: Six main know Monascus-derived polyketides were analysed in silico an an vitro. Results: In silico tests reveal that the main derived compounds exhibit lipophilic properties, indicating their potential suitability as active ingredients in dermato-cosmetic formulations. In silico tests revealed significant flexibility and high degrees of unsaturation for some Monascus-derived polyketides, suggesting a broad interaction potential and a propensity for chemical instability. In silico permeability tests indicated low epidermal penetration. Cytotoxicity assays conducted in vitro on a HaCaT cell line revealed varying levels of cytotoxicity among the three classes of fungal polyketides. Yellow polyketides derived from Monascus purpureus and Monascus ruber exhibited moderate cytotoxicity, while orange polyketides derived from the same strains showed low cytotoxicity. Red, orange, and yellow polyketides derived from a high-productive Monascus sp. genus showed low or negligible cytotoxicity. After 48 h of exposure, the cytotoxic profiles of all Monascus polyketides remained relatively stable. The IC50 values obtained through linear or nonlinear models supplied by EXCEL MS Office or for the Systat programme indicated moderate-to-low cytotoxicity for polyketides derived from Monascus ruber and Monascus purpureus. The bioproducts derived from high-productive Monascus sp. exhibited weak or negligible cytotoxicity. Conclusions: The results obtained suggest that the Monascus-derived polyketides possess promising properties for therapeutic and cosmetic applications, but their chemical stability must be considered in the case of dermatological formulations. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Figure 1

18 pages, 1041 KiB  
Article
Oxidative Stress Protection and Anti-Inflammatory Activity of Polyphenolic Fraction from Urtica dioica: In Vitro Study Using Human Skin Cells
by Katarzyna Wójcik-Borowska, Weronika Wójciak, Magdalena Żuk, Piotr Luchowski, Agnieszka Skalska-Kamińska, Wiktoria Pacuła, Ireneusz Sowa and Magdalena Wójciak
Molecules 2025, 30(12), 2515; https://doi.org/10.3390/molecules30122515 - 9 Jun 2025
Viewed by 825
Abstract
Polyphenols are valuable contributors to skin health, offering potent antioxidant and anti-inflammatory effects that help counteract the process of inflammaging. According to the literature, Urtica dioica L. is a rich source of polyphenolic compounds, suggesting its potential for applications in cosmetology and dermatology. [...] Read more.
Polyphenols are valuable contributors to skin health, offering potent antioxidant and anti-inflammatory effects that help counteract the process of inflammaging. According to the literature, Urtica dioica L. is a rich source of polyphenolic compounds, suggesting its potential for applications in cosmetology and dermatology. This study aimed to evaluate the antioxidant and anti-inflammatory activity of polyphenol-rich fractions isolated from U. dioica leaves (UdLs) and flowers (UdFs) using human skin cells subjected to oxidative stress and lipopolysaccharide (LPS) stimulation, respectively. Extracts were obtained via an accelerated solvent extraction and further purified by a solid-phase extraction to concentrate their polyphenolic content. Their chemical composition was analyzed using UPLC-DAD-MS. Biological activity was assessed through cytotoxicity assays (NR and MTT), chemical and cellular antioxidant assays (DPPH, ABTS, FRAP, CUPRAC, TPC, and H₂DCFDA), an evaluation of antioxidant enzyme activity (SOD, CAT), lipid peroxidation (MDA), and cytokine production (IL-1β, IL-6, IL-10). Our study showed that both fractions were abundant in phenolic compounds, with chlorogenic acid identified as the predominant constituent. UdLs contained higher levels of phenolic acids, whereas the UdF was richer in flavonoids, particularly derivatives of isorhamnetin. Both the UdL and UdF were non-cytotoxic and exhibited strong radical scavenging potential, with the UdL being slightly more effective. They significantly reduced intracellular ROS levels, enhanced the activity of antioxidant enzymes, and attenuated lipid peroxidation in cells exposed to oxidative stress. Moreover, both fractions reduced the secretion of pro-inflammatory cytokines in LPS and H2O2-stimulated fibroblasts. These results highlight the potential of polyphenolic fractions derived from U. dioica leaves and flowers as multifunctional ingredients for anti-aging and skin-protective cosmetics. Full article
(This article belongs to the Special Issue Antioxidant, and Anti-Inflammatory Activities of Natural Plants)
Show Figures

Figure 1

Back to TopTop