Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the PRE
2.2. Evaluation of the Inhibitory Activity of PRE Against the AGE–RAGE Interaction
2.3. Evaluation of the Inhibitory Effect of PRE on Melanin Production by AGEs
2.4. Restorative Effects of Pretreatment on Keratinocyte Differentiation Defects in the Glycosylated Pseudobasal Layer of PRE
2.5. Evaluation of the Inhibitory Effect of PRE on AGE Formation
2.6. Clinical Studies in Humans
2.7. Statistical Analysis
3. Results
3.1. PRE Inhibits the AGE–RAGE Interaction
3.2. PRE Suppresses AGE-Induced Melanin Production
3.3. Pretreatment Restores the Differentiation Ability of Keratinocytes on Glycosylated Laminin 332
3.4. PRE Suppresses AGE Formation
3.5. PRE Exhibits Cosmetic Effects in Human Clinical Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGE | advanced glycation end product |
BG | 1,3-butylene glycol |
K10 | keratin 10 |
MGM | MGM™-4 Melanocyte Growth Medium-4 BulletKit™ |
NHEK | normal human epidermal keratinocytes |
PRE | peony root extract |
RAGE | receptor of AGE |
TGM1 | transglutaminase 1 |
References
- De Rigal, J.; Des Mazis, I.; Diridollou, S.; Querleux, B.; Yang, G.; Leroy, F.; Barbosa, V.H. The effect of age on skin color and color heterogeneity in four ethnic groups. Ski. Res. Technol. 2010, 16, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Nurani, A.M.; Kikuchi, K.; Iino, M.; Shirasugi, Y.; Sonoki, A.; Fujimura, T.; Hasegawa, K.; Shibata, T. Development of a method for evaluating skin dullness: A mathematical model explaining dullness by the color, optical properties, and microtopography of the skin. Ski. Res. Technol. 2023, 29, e13407. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Zhang, J.Q.; Li, L.; Guo, M.M.; He, Y.F.; Dong, Y.M.; Meng, H.; Yi, F. Advanced glycation end products in the skin: Molecular mechanisms, methods of measurement, and inhibitory pathways. Front. Med. 2022, 9, 837222. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef]
- Zheng, D.L.; Wu, Q.R.; Zeng, P.; Li, S.M.; Cai, Y.J.; Chen, S.Z.; Luo, X.S.; Kuang, S.J.; Rao, F.; Lai, Y.Y.; et al. Advanced glycation end products induce senescence of atrial myocytes and increase susceptibility of atrial fibrillation in diabetic mice. Aging Cell 2022, 21, e13734. [Google Scholar] [CrossRef]
- Dyer, D.G.; Dunn, J.A.; Thorpe, S.R.; Bailie, K.E.; Lyons, T.J.; McCance, D.R.; Baynes, J.W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Investig. 1993, 91, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Li, L.; Winget, J.; Laughlin, T.; Hakozaki, T. Identification of yellow advanced glycation end products in human skin. Int. J. Mol. Sci. 2024, 25, 5596. [Google Scholar] [CrossRef]
- Stern, D.; Du Yan, S.; Yan, S.F.; Schmidt, A.M. Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Adv. Drug Deliv. Rev. 2002, 54, 1615–1625. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.Y.; Oh, S.H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci. Rep. 2016, 6, 27848. [Google Scholar] [CrossRef]
- Weinhage, T.; Wirth, T.; Schütz, P.; Becker, P.; Lueken, A.; Skryabin, B.V.; Wittkowski, H.; Foell, D. The receptor for advanced glycation endproducts (rage) contributes to severe inflammatory liver injury in mice. Front. Immunol. 2020, 11, 1157. [Google Scholar] [CrossRef]
- Radziszewski, M.; Galus, R.; Łuszczyński, K.; Winiarski, S.; Wąsowski, D.; Malejczyk, J.; Włodarski, P.; Ścieżyńska, A. The RAGE pathway in skin pathology development: A comprehensive review of its role and therapeutic potential. Int. J. Mol. Sci. 2024, 25, 13570. [Google Scholar] [CrossRef]
- He, D.Y.; Dai, S.M. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora pall., a traditional Chinese herbal medicine. Front. Pharmacol. 2011, 2, 10. [Google Scholar] [CrossRef]
- Sakamoto, K.; Watanabe, C.; Masutani, T.; Hirasawa, A.; Wakamatsu, K.; Iddamalgoda, A.; Kakumu, Y.; Yamauchi, K.; Mitsunaga, T. Arnica montana L. extract containing 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin accelerates growth and differentiation of human subcutaneous preadipocytes and leads volumizing of skin. Int. J. Cosmet. Sci. 2023, 45, 1–13. [Google Scholar] [CrossRef]
- Sakamoto, K.; Fujimoto, R.; Nakagawa, S.; Kamiyama, E.; Kanai, K.; Kawai, Y.; Kojima, H.; Hirasawa, A.; Wakamatsu, K.; Masutani, T. Juniper berry extract containing anthricin and yatein suppresses lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases spots in human skin. Int. J. Cosmet. Sci. 2023, 45, 655–671. [Google Scholar] [CrossRef]
- He, C.N.; Peng, Y.; Zhang, Y.C.; Xu, L.J.; Gu, J.; Xiao, P.G. Phytochemical and biological studies of paeoniaceae. Chem. Biodivers. 2010, 7, 805. [Google Scholar] [CrossRef] [PubMed]
- Malviya, N.; Jain, S. Wound healing activity of aqueous extract of Radix paeoniae root. Acta Pol. Pharm. 2009, 66, 543–547. [Google Scholar]
- Lee, B.; Shin, Y.W.; Bae, E.A.; Han, S.J.; Kim, J.S.; Kang, S.S.; Kim, D.H. Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch. Pharm. Res. 2008, 31, 445–450. [Google Scholar] [CrossRef]
- Lin, D.; Wang, S.H.; Song, T.Y.; Hsieh, C.W.; Tsai, M.S. Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells. J. Cosmet. Dermatol. 2019, 18, 1921–1929. [Google Scholar] [CrossRef]
- Goto, H.; Shimada, Y.; Akechi, Y.; Kohta, K.; Hattori, M.; Terasawa, K. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med. 1996, 62, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Zgutka, K.; Tkacz, M.; Tomasiak, P.; Tarnowski, M. A role for advanced glycation end products in molecular ageing. Int. J. Mol. Sci. 2023, 24, 9881. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xiao, X.; Guo, D.; Mo, L.; Bu, C.; Ye, W.; Den, Q.; Liu, S.; Yang, X. Protective effects of paeoniflorin against AOPP-induced oxidative injury in HUVECS by blocking the ROS-HIF-1α/VEGF pathway. Phytomedicine 2017, 34, 115–126. [Google Scholar] [CrossRef]
- Li, X.; Zheng, T.; Sang, S.; Lv, L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J. Agric. Food Chem. 2014, 62, 12152–12158. [Google Scholar] [CrossRef]
- Poojary, M.M.; Zhang, W.; Olesen, S.B.; Rauh, V.; Lund, M.N. Green tea extract decreases Arg-derived advanced glycation endproducts but not Lys-derived AGEs in UHT milk during 1-year storage. J. Agric. Food Chem. 2020, 68, 14261–14273. [Google Scholar] [CrossRef]
- González, I.; Morales, M.A.; Rojas, A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res. Int. 2020, 129, 108843. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, J.; Shen, L.; Wu, L.; Wang, C.; Liu, Y. The innovative extraction and purification process of insoluble polyphenols from Paeonia ostii roots: Optimum study and in vitro activities. Process Biochem. 2024, 142, 13–23. [Google Scholar] [CrossRef]
- Wen, S.Y.; Wu, Y.S.; Liu, H.; Ng, S.C.; Padma, V.V.; Huang, C.Y.; Kuo, W.W. Paeoniflorin found in Paeonia lactiflora root extract inhibits melanogenesis by regulating melanin-related signal transduction in B16F10 cells. J. Cosmet. Dermatol. 2023, 22, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Madsen, D.H.; Leonard, D.; Masedunskas, A.; Moyer, A.; Jürgensen, H.J.; Peters, D.E.; Amornphimoltham, P.; Selvaraj, A.; Yamada, S.S.; Brenner, D.A.; et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway. J. Cell Biol. 2013, 202, 951–966. [Google Scholar] [CrossRef]
- Osonoi, S.; Mizukami, H.; Takeuchi, Y.; Sugawa, H.; Ogasawara, S.; Takaku, S.; Sasaki, T.; Kudoh, K.; Ito, K.; Sango, K.; et al. RAGE activation in macrophages and development of experimental diabetic polyneuropathy. JCI Insight 2022, 7, e160555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanai, K.; Biswas, K.B.; Hirasawa, A.; Futamura, M.; Tanaka, K.; Sakamoto, K. Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness. Cosmetics 2025, 12, 163. https://doi.org/10.3390/cosmetics12040163
Kanai K, Biswas KB, Hirasawa A, Futamura M, Tanaka K, Sakamoto K. Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness. Cosmetics. 2025; 12(4):163. https://doi.org/10.3390/cosmetics12040163
Chicago/Turabian StyleKanai, Kyoko, Kazal Boron Biswas, Asuka Hirasawa, Misaki Futamura, Kiyotaka Tanaka, and Kotaro Sakamoto. 2025. "Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness" Cosmetics 12, no. 4: 163. https://doi.org/10.3390/cosmetics12040163
APA StyleKanai, K., Biswas, K. B., Hirasawa, A., Futamura, M., Tanaka, K., & Sakamoto, K. (2025). Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness. Cosmetics, 12(4), 163. https://doi.org/10.3390/cosmetics12040163