Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,077)

Search Parameters:
Keywords = constitutive promoter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3724 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 956 KiB  
Review
Sexual Health Education in Nursing: A Scoping Review Based on the Dialectical Structural Approach to Care in Spain
by Mónica Raquel Pereira-Afonso, Raquel Fernandez-Cézar, Victoria Lopezosa-Villajos, Miriam Hermida-Mota, Maria Angélica de Almeida Peres and Sagrario Gómez-Cantarino
Healthcare 2025, 13(15), 1911; https://doi.org/10.3390/healthcare13151911 - 5 Aug 2025
Abstract
Sexual health constitutes a fundamental aspect of overall well-being, with direct implications for individual development and the broader social and economic progress of communities. Promoting environments that ensure sexual experiences free from coercion, discrimination, and violence is a key public health priority. Sexuality, [...] Read more.
Sexual health constitutes a fundamental aspect of overall well-being, with direct implications for individual development and the broader social and economic progress of communities. Promoting environments that ensure sexual experiences free from coercion, discrimination, and violence is a key public health priority. Sexuality, in this regard, should be understood as an inherent dimension of human experience, shaped by biological, cultural, cognitive, and ideological factors. Accordingly, sexual health education requires a holistic and multidimensional approach that integrates sociocultural, biographical, and professional perspectives. This study aims to examine the level of knowledge and training in sexual health among nursing students and healthcare professionals, as well as to assess the extent to which sexual health content is incorporated into nursing curricula at Spanish universities. A scoping review was conducted using the Dialectical Structural Model of Care (DSMC) as the theoretical framework. The findings indicate a significant lack of knowledge regarding sexual health among both nursing students and healthcare professionals, largely due to educational and structural limitations. Furthermore, sexual health education remains underrepresented in nursing curricula and is frequently addressed from a narrow, fragmented biomedical perspective. These results highlight the urgent need for the comprehensive integration of sexual health content into nursing education. Strengthening curricular inclusion is essential to ensure the preparation of competent professionals capable of delivering holistic, inclusive, and empowering care in this critical area of health. Full article
(This article belongs to the Special Issue Advances in Sexual and Reproductive Health)
Show Figures

Figure 1

18 pages, 3120 KiB  
Article
Měnglà Virus VP40 Localizes to the Nucleus and Impedes the RIG-I Signaling Pathway
by Joyce Sweeney Gibbons, Naveen Thakur, Emma Komers, Olivia A. Vogel, Poushali Chakraborty, JoAnn M. Tufariello and Christopher F. Basler
Viruses 2025, 17(8), 1082; https://doi.org/10.3390/v17081082 - 5 Aug 2025
Viewed by 42
Abstract
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair [...] Read more.
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses. In this study, MLAV VP40 is demonstrated to impair the Sendai virus (SeV)-induced activation of the IFNβ promoter. Inhibition is independent of the MLAV VP40 PPPY late-domain motif that interacts with host proteins possessing WW-domains to promote viral budding. Similar IFNβ promoter inhibition was not detected for EBOV or MARV VP40. MLAV VP40 exhibited lesser capacity to inhibit TNFα activation of an NF-κB reporter gene. MLAV VP40 impaired IFNβ promoter activation by an over-expressed, constitutively active form of RIG-I and by the over-expressed IRF3 kinases TBK1 and IKKε. However, MLAV VP40 did not inhibit IFNβ promoter activation by constitutively active IRF3 5D. Consistent with these findings, MLAV VP40 inhibited SeV-induced IRF3 phosphorylation. Although IRF3 phosphorylation occurs in the cytoplasm, MLAV VP40 exhibits substantial nuclear localization, accumulating in foci in HeLa cell nuclei. In contrast, the VP40 of EBOV and MARV exhibited lower degrees of nuclear localization and did not accumulate in foci. MLAV VP40 interacts with importin alpha-1 (IMPα1), suggesting entry via the IMPα/IMPβ nuclear import pathway. Cumulatively, these data identify novel features that distinguish MLAV VP40 from its homologues in EBOV and MARV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

7 pages, 1045 KiB  
Proceeding Paper
Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria
by Aliyu Abdulkadir, Marvelous Oluwashina Ajayi and Halima Abubakar Kusfa
Med. Sci. Forum 2025, 35(1), 4; https://doi.org/10.3390/msf2025035004 - 4 Aug 2025
Viewed by 19
Abstract
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and [...] Read more.
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and clinics of the Kaduna metropolis. In total, 83.7% of the identified antimicrobials were in the form of oral medication, and most were registered antibiotics (52.8%). Parenteral and topical forms were also identified, with 94% also being antibiotics. The estimated AMU was 282 mg/kg population correction unit (PCU). Poultry represented the most significant population, constituting 99% (31,502,004) of the study population. The class-specific AMU was antibiotics, with 274 mg/kg PCU. The antiprotozoal AMU was 418 mg/kg PCU. The anthelminthic AMU was the highest at 576 mg/kg PCU. This study has provided useful and practical information on the trends in antimicrobial use in animals, with poultry being the most important animal population involved in AMU and oxytetracycline being the most abused antibiotic in animal production. Antimicrobial stewardship (AMS) should be targeted at poultry populations, with an emphasis on reducing antibiotic use/consumption. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

24 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Viewed by 128
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

24 pages, 5000 KiB  
Article
A Study of Methylene Blue Adsorption by a Synergistic Adsorbent Algae (Nostoc sphaericum)/Activated Clay
by Yakov Felipe Carhuarupay-Molleda, Noemí Melisa Ccasa Barboza, Sofía Pastor-Mina, Carlos Eduardo Dueñas Valcarcel, Ybar G. Palomino-Malpartida, Rolando Licapa Redolfo, Antonieta Mojo-Quisani, Miriam Calla-Florez, Rolando F. Aguilar-Salazar, Yovana Flores-Ccorisapra, Arturo Rojas Benites, Edward Arostegui León, David Choque-Quispe and Frida E. Fuentes Bernedo
Polymers 2025, 17(15), 2134; https://doi.org/10.3390/polym17152134 - 4 Aug 2025
Viewed by 291
Abstract
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was [...] Read more.
Dye residues from the textile industry constitute a critical wastewater problem. This study aimed to evaluate the removal capacity of methylene blue (MB) in aqueous media, using an adsorbent formulated from activated and sonicated nanoclay (NC) and microatomized Nostoc sphaericum (ANS). NC was obtained by acid treatment, followed by activation with 1 M NaCl and sonication, while ANS was obtained by microatomization in an aqueous medium. NC/ANS was mixed in a 4:1 weight ratio. The NC/ANS synergistic adsorbent was characterized by the point of zero charge (PZC), zeta potential (ζ), particle size, FTIR spectroscopy, and scanning electron microscopy (SEM). NC/ANS exhibited good colloidal stability, as determined by pHPZC, particle size in the nanometer range, and heterogeneous morphology with functional groups (hydroxyl, carboxyl, and amide), removing between 72.59 and 97.98% from an initial concentration of 10 ppm of MB, for doses of 20 to 30 mg/L of NC/ANS and pH of 5 to 8. Optimal adsorption conditions are achieved at pH 6.8 and 32.9 mg/L of adsorbent NC/ANS. It was observed that the pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models best described the adsorption kinetics, indicating a predominance of the physisorption process, with adsorption capacity around 20 mg/g. Isotherm models and thermodynamic parameters of adsorption, ΔS, ΔH, and ΔG, revealed that the adsorption process is spontaneous, favorable, thermodynamically stable, and occurs at the monolayer level, with a regeneration capacity of 90.35 to 37.54% at the fifth cycle. The application of physical activation methods, such as sonication of the clay and microatomization of the algae, allows proposing a novel and alternative synergistic material from organic and inorganic sources that is environmentally friendly and promotes sustainability, with a high capacity to remove cationic dyes in wastewater. Full article
Show Figures

Figure 1

21 pages, 16545 KiB  
Article
Multi-Objective Land Use Optimization Based on NSGA-II and PLUS Models: Balancing Economic Development and Carbon Neutrality Goals
by Hanlong Gu, Shuoxin Liu, Chongyang Huan, Ming Cheng, Xiuru Dong and Haohang Sun
Land 2025, 14(8), 1585; https://doi.org/10.3390/land14081585 - 3 Aug 2025
Viewed by 343
Abstract
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to [...] Read more.
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to 2020 and to assess their impacts on land use carbon emissions (LUCE) and ecosystem carbon storage (ECS). To accelerate the achievement of carbon neutrality, four development scenarios are established: natural development (ND), low-carbon emission (LCE), high-carbon storage (HCS), and carbon neutrality (CN). For each scenario, corresponding optimization objectives and constraint conditions are defined, and a multi-objective LULC optimization coupling model is formulated to optimize both the quantity structure and spatial pattern of LULC. On this basis, the model quantifies ECS and LUCE under the four scenarios and evaluates the economic value of each scenario and its contribution to the carbon neutrality target. Results indicate the following: (1) From 2000 to 2020, the extensive expansion of construction land resulted in a reduction in ECS by 12.72 × 106 t and an increase in LUCE by 150.44 × 106 t; (2) Compared to the ND scenario, the LCE scenario exhibited the most significant performance in controlling carbon emissions, while the HCS scenario achieved the highest increase in carbon sequestration. The CN scenario showed significant advantages in reducing LUCE, enhancing ECS, and promoting economic growth, achieving a reduction of 0.18 × 106 t in LUCE, an increase of 118.84 × 106 t in ECS, and an economic value gain of 3386.21 × 106 yuan. This study optimizes the LULC structure from the perspective of balancing economic development, LUCE reduction, and ECS enhancement. It addresses the inherent conflict between regional economic growth and ecological conservation, providing scientific evidence and policy insights for promoting LULC optimization and advancing carbon neutrality in similar regions. Full article
Show Figures

Figure 1

17 pages, 16726 KiB  
Article
Genome-Wide Identification, Characterization, and Comparison of C3HC4 Family Genes in Salt Tolerance Between Barley and Rice
by Kerun Chen, Shuai Wang, Xiaohan Xu, Xintong Zheng, Hongkai Wu, Linzhou Huang, Liping Dai, Chenfang Zhan, Dali Zeng and Liangbo Fu
Plants 2025, 14(15), 2404; https://doi.org/10.3390/plants14152404 - 3 Aug 2025
Viewed by 284
Abstract
Soil salinization constitutes a major constraint on global agricultural production, with marked divergence in salt adaptation strategies between salt-tolerant barley (Hordeum vulgare) and salt-sensitive rice (Oryza sativa). This study systematically investigated the evolution and functional specialization of the C3HC4-type [...] Read more.
Soil salinization constitutes a major constraint on global agricultural production, with marked divergence in salt adaptation strategies between salt-tolerant barley (Hordeum vulgare) and salt-sensitive rice (Oryza sativa). This study systematically investigated the evolution and functional specialization of the C3HC4-type RING zinc finger gene family, known to mediate abiotic stress responses through E3 ubiquitin ligase activity, in these contrasting cereal species. Through comparative genomics, we identified 123 HvC3HC4 genes and 90 OsC3HC4 genes, phylogenetically classified into four conserved subgroups. Differences in C3HC4 genes in phylogenetic relationships, chromosomal distribution, gene structure, motif composition, gene duplication events, and cis-elements in the promoter region were observed between barley and rice. Moreover, HvC3HC4s in barley tissues preferentially adopted an energy-conserving strategy, which may be a key mechanism for barley’s higher salt tolerance. Additionally, we found that C3HC4 genes were evolutionarily conserved in salt-tolerant species. The current results reveal striking differences in salt tolerance between barley and rice mediated by the C3HC4 gene family and offer valuable insight for potential genetic engineering applications in improving crop resilience to salinity stress. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 - 1 Aug 2025
Viewed by 228
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

14 pages, 233 KiB  
Article
Looking Through the Corporate Glass Ceiling in China
by Runping Zhu, Zunbin Huo, Zeqing Chen and Richard Krever
J. Risk Financial Manag. 2025, 18(8), 423; https://doi.org/10.3390/jrfm18080423 - 1 Aug 2025
Viewed by 190
Abstract
An important element in the Constitution of the People’s Republic of China is the guarantee of gender equality in all fields. The principle is not reflected in terms of corporate governance and senior management, however. A study of the largest 400 companies listed [...] Read more.
An important element in the Constitution of the People’s Republic of China is the guarantee of gender equality in all fields. The principle is not reflected in terms of corporate governance and senior management, however. A study of the largest 400 companies listed on Chinese stock exchanges shows far fewer female board members and senior managers than male counterparts and only a small improvement over the course of a decade. A comparison of gender balances in terms of a range of variables, including stock exchange listing, industry type, and ownership type, reveals better balances in wholly privately owned firms than in those with controlling state interests. Subject to intervening government policies to promote state-owned enterprises over private sector counterparts, the pattern over the decade studied suggests there is a possibility privately owned enterprises may gradually displace state-owned companies in the largest 400 group and gender balances in senior roles in the largest 400 group will consequently improve. Full article
(This article belongs to the Special Issue Emerging Issues in Economics, Finance and Business—2nd Edition)
32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 284
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 222
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 229
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

16 pages, 11910 KiB  
Article
Characterization and Expression Analysis of β-Glucosidase Gene Under Abiotic Stresses in Pepper (Capsicum annuum L.)
by Jing Wang, Jiaxin Huang, Xu Jia, Zhenxin Hao, Yuancai Yang, Ruxia Tian and Yanping Liang
Genes 2025, 16(8), 889; https://doi.org/10.3390/genes16080889 - 27 Jul 2025
Viewed by 367
Abstract
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the [...] Read more.
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the response to abiotic stress. Methods: We performed a genome-wide identification of pepper BGLU (CaBGLU) genes. Phylogenetic analysis included BGLU proteins from Arabidopsis, tomato, and pepper. Gene structures, conserved motifs, and promoter cis-elements were analyzed bioinformatically. Synteny within the pepper genome was assessed. Protein-protein interaction potential was predicted. Gene expression patterns were analyzed across tissues and under abiotic stresses using transcriptomic data and qRT-PCR. Subcellular localization of a key candidate protein CaBGLU21 was confirmed experimentally. Results: We identified 32 CaBGLU genes unevenly distributed across eight chromosomes. Phylogenetic classification of 99 BGLU proteins into 12 subfamilies revealed an uneven distribution of CaBGLUs across six subfamilies. Proteins within subfamilies shared conserved motifs and gene structures. CaBGLU promoters harbored abundant light-, hormone- (MeJA, ABA, SA, GA), and stress-responsive elements (including low temperature). A duplicated gene pair (CaBGLU19/CaBGLU24) was identified. 27 CaBGLU proteins showed potential for interactions. Expression analysis indicated CaBGLU5 and CaBGLU30 were mesophyll-specific, while CaBGLU21 was constitutively high in non-leaf tissues. CaBGLU21 was consistently upregulated by cold, heat, and ABA. Subcellular localization confirmed CaBGLU21 resides in the tonoplast. Conclusions: This comprehensive analysis characterizes the pepper BGLU gene family. CaBGLU21, exhibiting constitutive expression in non-leaf tissues, strong upregulation under multiple stresses, and tonoplast localization, emerges as a prime candidate gene for further investigation into abiotic stress tolerance mechanisms in pepper. The findings provide a foundation for future functional studies and stress-resistant pepper breeding. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

19 pages, 424 KiB  
Article
“Words Falter in Encapsulating the Dao 言語道斷”: The Philosophy of Language of Zen Buddhism in The Platform Sutra of the Sixth Patriarch
by Xiangqian Che
Religions 2025, 16(8), 974; https://doi.org/10.3390/rel16080974 - 27 Jul 2025
Viewed by 326
Abstract
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the [...] Read more.
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the Dao (言語道斷), framing language as a provisional “raft” (筏) that must be instrumentalized yet transcended through a dialectic of employing and abandoning (用離辯證). It ontologically grounds this view in Buddha-nature’s (佛性) pre-linguistic essence, advocating transcending reliance on words and letters (不假文字) while strategically deploying language to dismantle its own authority. Historically, this constituted a revolt against Tang scholasticism’s textual fetishism. The text adopts a dynamic dialectic, neither clinging to nor rejecting language, exemplified by Huineng’s awakening through the Diamond Sutra, where recitation catalyzes internal insight. Operationally, it utilizes negational discourse, the “Two Paths Mutually Condition” method (二道相因) embedded in the “Twelve Pairs of Dharmic Forms” (法相語言十二對) in particular, to systematically deconstruct dualisms, while promoting embodied unity of speech, mind, and action (口念心行) to critique empty recitation. Ultimately, the sutra orchestrates language as a self-subverting medium: balancing acknowledgment of its limitations with pragmatic instrumentality, it presents an Eastern paradigm where language actively disrupts conceptual fetters to facilitate direct insight into Buddha-nature, reframing it as a dynamic catalyst for “illuminating the mind and seeing one’s nature” (明心見性). Full article
Back to TopTop