Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (324)

Search Parameters:
Keywords = community noise impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 192
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 16421 KiB  
Article
Deep Neural Network with Anomaly Detection for Single-Cycle Battery Lifetime Prediction
by Junghwan Lee, Longda Wang, Hoseok Jung, Bukyu Lim, Dael Kim, Jiaxin Liu and Jong Lim
Batteries 2025, 11(8), 288; https://doi.org/10.3390/batteries11080288 - 30 Jul 2025
Viewed by 489
Abstract
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially [...] Read more.
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially introduce biases into training and evaluation pipelines. This study presents a deep learning framework that integrates autoencoder-based anomaly detection with a residual neural network (ResNet) to achieve state-of-the-art prediction of remaining useful life at the cycle level using only a single-cycle input. The framework systematically filters out anomalous samples using multiple variants of convolutional and sequence-to-sequence autoencoders, thereby enhancing data integrity before optimizing and training the ResNet-based models. Benchmarking against existing deep learning approaches demonstrates a significant performance improvement, with the best model achieving a mean absolute percentage error of 2.85% and a root mean square error of 40.87 cycles, surpassing prior studies. These results indicate that autoencoder-based anomaly filtering significantly enhances prediction accuracy, reinforcing the importance of systematic anomaly detection in battery prognostics. The proposed method provides a scalable and interpretable solution for intelligent battery management in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Battery Systems)
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 311
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

12 pages, 205 KiB  
Project Report
The A.BA.CO. Project and Efforts to Optimize Access to the Sounds of Learning
by Eva Orzan, Valeria Gambacorta and Giampietro Ricci
Audiol. Res. 2025, 15(4), 92; https://doi.org/10.3390/audiolres15040092 - 25 Jul 2025
Viewed by 150
Abstract
Background/Objectives: Despite its significant impact on learning, classroom acoustics and students’ hearing difficulties are often overlooked compared with more visible issues like lighting. Hearing loss—frequently underestimated and invisible—affects both students and teachers, potentially leading to fatigue, reduced participation, and academic challenges. The [...] Read more.
Background/Objectives: Despite its significant impact on learning, classroom acoustics and students’ hearing difficulties are often overlooked compared with more visible issues like lighting. Hearing loss—frequently underestimated and invisible—affects both students and teachers, potentially leading to fatigue, reduced participation, and academic challenges. The A.BA.CO. project in Italy was developed to address these issues by promoting improved classroom design, technological solutions, and better auditory communication accessibility in schools. Objective: This article presents the A.BA.CO. project, offering context and an overview of the preliminary analyses conducted by its multidisciplinary team. The goal is to share insights and propose organizational frameworks, technical solutions, and best practices concerning the hearing, communication, and auditory learning challenges experienced by students with hearing impairments. Results: The A.BA.CO. team’s analyses identified key barriers to inclusion for students with (or without) hearing impairments, such as poor classroom acoustics, excessive noise, and suboptimal seating arrangements. The project underscores the importance of improved acoustic environments and the integration of assistive technologies, including speech-to-text systems. The findings highlight the need for interdisciplinary collaboration to design accessible and inclusive educational settings for all learners. Conclusions: Embedding educational audiology within school systems—alongside enhancements in classroom acoustics and the use of assistive technologies and other technological solutions—is essential to ensure that all students, regardless of hearing ability, have equitable access to learning and full participation in educational life. Full article
17 pages, 6827 KiB  
Article
Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation
by Xiaomin Guo, Wenhe Zhou, Yue Luo, Xiangyu Meng, Jiamin Li, Yaoxing Bian, Yanqiang Guo and Liantuan Xiao
Entropy 2025, 27(8), 786; https://doi.org/10.3390/e27080786 - 24 Jul 2025
Viewed by 169
Abstract
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase [...] Read more.
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude–phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 1020, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

19 pages, 782 KiB  
Article
On the Rate-Distortion Theory for Task-Specific Semantic Communication
by Jingxuan Chai, Huixiang Zhu, Yong Xiao, Guangming Shi and Ping Zhang
Entropy 2025, 27(8), 775; https://doi.org/10.3390/e27080775 - 23 Jul 2025
Viewed by 237
Abstract
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, [...] Read more.
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, etc.), semantic communication targets at delivering the intended meaning at the destination user which is often quantified by various statistical divergences, often referred to as the semantic distances. Currently, there still lacks a unified framework to quantify the rate-distortion tradeoff for semantic communication with different task-specific semantic distance measures. To tackle this problem, we propose the task-specific rate-distortion theory for semantic communication where different task-specific statistic divergence metrics can be considered. To investigate the impact of different semantic distance measures on the achievable rate, we consider two popular tasks, classification and signal generation. We present the closed-form expressions of the semantic rate-distortion functions for these two different tasks and compare their performance under various scenarios. Extensive experimental results are presented to verify our theoretical results. Full article
(This article belongs to the Special Issue Semantic Information Theory)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 488
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

22 pages, 703 KiB  
Article
An Impact Assessment of Speed Humps’ Geometric Characteristics and Spacing on Vehicle Speed: An Overview
by Nawaf M. Alshabibi
Infrastructures 2025, 10(7), 190; https://doi.org/10.3390/infrastructures10070190 - 21 Jul 2025
Viewed by 375
Abstract
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance [...] Read more.
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance road safety. The effectiveness of these measures is strongly influenced by parameters such as height, width, profile, and placement intervals. While the geometric optimization of humps generally improves speed-reduction outcomes, several studies indicate that braking and acceleration at humps can lead to increased traffic noise, particularly in residential and high-density areas. This review also explores design strategies and material choices (e.g., asphalt use, sinusoidal profiles) that may help mitigate noise impacts. Overall, a balance between speed control and noise management is necessary to ensure both safety and community acceptance. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

24 pages, 2639 KiB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Viewed by 1191
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

24 pages, 20729 KiB  
Article
Chaotic Image Encryption System as a Proactive Scheme for Image Transmission in FSO High-Altitude Platform
by Ping Zhang, Jingfeng Jie, Zhi Liu and Keyan Dong
Photonics 2025, 12(7), 635; https://doi.org/10.3390/photonics12070635 - 23 Jun 2025
Viewed by 263
Abstract
To further enhance the stability and security of image transmission in FSO (Free Space Optics) aviation platforms, this paper proposes a communication transmission scheme that integrates a chaotic image encryption system with the HAP (high-altitude platform) environment. This scheme effectively combines the chaotic [...] Read more.
To further enhance the stability and security of image transmission in FSO (Free Space Optics) aviation platforms, this paper proposes a communication transmission scheme that integrates a chaotic image encryption system with the HAP (high-altitude platform) environment. This scheme effectively combines the chaotic image encryption algorithm with the atmospheric turbulence channel transmission process, improving the anti-interference capabilities and security of HAP optical communication for image transmission. First, a five-dimensional hyperchaotic system with complex dynamic characteristics is introduced, and the system’s chaotic behaviors and dynamic properties are explored. The improved system model incorporates chaotic mapping and DNA coding techniques, forming a robust chaotic image encryption system, whose performance is experimentally validated. Next, the feasibility of integrating the chaotic image encryption system with HAP optical communication is discussed. A detailed description of the corresponding turbulence model and test conditions is provided. To verify the scheme’s feasibility, plaintext images of varying sizes are selected for experiments, comparing the transmission performance of both unencrypted and encrypted images under three turbulence levels: weak, medium, and strong. The impact on image communication quality is quantitatively analyzed using PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index measure). Finally, the effect of malicious interception attacks, caused by noise interference from different levels of atmospheric turbulence, is examined. The robustness and feasibility of the proposed scheme are validated, providing a promising approach for integrating HAP optical communication’s anti-turbulence capabilities with chaotic image encryption. Full article
Show Figures

Figure 1

13 pages, 3148 KiB  
Article
Reconstruction and Separation Method of Ranging and Communication Phase in Beat-Note for Micro-Radian Phasemeter
by Tao Yu, Hongyu Long, Ke Xue, Mingzhong Pan, Zhi Wang and Yunqing Liu
Aerospace 2025, 12(7), 564; https://doi.org/10.3390/aerospace12070564 - 20 Jun 2025
Viewed by 224
Abstract
The primary measurement involves detecting tiny (picometer-level) pathlength fluctuations between satellites using heterodyne laser interferometry for space-based gravitational wave detection. The interference of two laser beams with a MHz-level frequency difference produces a MHz beat-note, in which the gravitational wave signal is encoded [...] Read more.
The primary measurement involves detecting tiny (picometer-level) pathlength fluctuations between satellites using heterodyne laser interferometry for space-based gravitational wave detection. The interference of two laser beams with a MHz-level frequency difference produces a MHz beat-note, in which the gravitational wave signal is encoded in the phase of the beat-note. The phasemeter then performs micro-radian accuracy phase measurement and communication information demodulation for this beat-note. To mitigate the impact of phase modulation, existing solutions mostly alleviate it by reducing the modulation depth and optimizing the structure of the pseudo-random noise (PRN) codes. Since the phase modulation is not effectively separated from the phase of the beat-note phase measurement, it has a potential impact on the phase extraction of the micro-radian accuracy of the beat-note. To solve this problem, this paper analyzes the influence mechanism of phase modulation on beat-note phase measurement and proposes a method to separate the modulated phase based on complex rotation. The beat-note is processed by complex conjugate rotation, which can effectively eliminate the PRN modulated phase. Simulation and analysis results demonstrate that this method can significantly enhance the purity of the measured phase in the beat-note while maintaining the ranging and communication functions. Targeting the application of the micro-radian phasemeter in space-based gravitational wave detection, this study presents the reconstruction and separation method of the ranging and communication phase in beat-note, which also provides a new direction for the final selection of modulation depth in the future. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

27 pages, 1470 KiB  
Review
Beyond Speed Reduction: A Systematic Literature Review of Traffic-Calming Effects on Public Health, Travel Behaviour, and Urban Liveability
by Fotios Magkafas, Grigorios Fountas, Panagiotis Ch. Anastasopoulos and Socrates Basbas
Infrastructures 2025, 10(6), 147; https://doi.org/10.3390/infrastructures10060147 - 16 Jun 2025
Viewed by 928
Abstract
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming [...] Read more.
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming measures—from speed limit reductions to physical infrastructure and enforcement-based interventions—by synthesising findings from 28 peer-reviewed studies. Guided by the PRISMA framework, the review compiles research exploring links between traffic calming and outcomes related to public health, behaviour, and urban quality of life. Research consistently indicates that such interventions reduce both the frequency and severity of collisions, improve air and noise quality, and promote active mobility. These effects are shaped by user perceptions: non-motorised users tend to report higher levels of safety and accessibility, whereas motorised users often express frustration or resistance. Beyond safety and environmental improvements, traffic calming has been associated with greater use of public space, stronger social connections, and enhanced environmental aesthetics. The findings also show that key challenges may affect the effectiveness of traffic calming and these include negative attitudes among drivers, mixed outcomes for air quality, and unintended consequences such as traffic displacement or increased noise when interventions are poorly implemented. Overall, the findings suggest that traffic calming can serve as both a public health initiative and a tool for enhancing urban liveability, provided that the measures are designed with contextual sensitivity and supported by inclusive communication strategies. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

23 pages, 2407 KiB  
Article
Enhancing Quantum Information Distribution Through Noisy Channels Using Quantum Communication Architectures
by Francisco Delgado
Information 2025, 16(6), 485; https://doi.org/10.3390/info16060485 - 11 Jun 2025
Viewed by 1064
Abstract
Quantum information transmission is subject to imperfections in communication processes and systems. These phenomena alter the original content due to decoherence and noise. However, suitable communication architectures incorporating quantum and classical redundancy can selectively remove these errors, boosting destructive interference. In this work, [...] Read more.
Quantum information transmission is subject to imperfections in communication processes and systems. These phenomena alter the original content due to decoherence and noise. However, suitable communication architectures incorporating quantum and classical redundancy can selectively remove these errors, boosting destructive interference. In this work, a selection of architectures based on path superposition or indefinite causal order were analyzed under appropriate configurations, alongside traditional methods such as classical redundancy, thus enhancing transmission. For that purpose, we examined a broad family of decoherent channels associated with the qubit chain transmission by passing through tailored arrangements or composite architectures of imperfect channels. The outcomes demonstrated that, when combined with traditional redundancy, these configurations could significantly improve the transmission across a substantial subset of the channels. For quantum key distribution purposes, two alternative bases were considered to encode the information chain. Because a control system must be introduced in the proposed architectures, two strategies for its disposal at the end of the communication process were compared: tracing and measurement. In addition, eavesdropping was also explored under a representative scenario, to quantify its impact on the most promising architecture analyzed. Thus, in terms of transmission quality and security, the analysis revealed significant advantages over direct transmission schemes. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

21 pages, 951 KiB  
Article
Bit Synchronization-Assisted Frequency Correction in Low-SNR Wireless Systems
by Junfeng Gao, Peiji Yang, Shaoxiang Chen, Zhenghua Luo, Yilin Zhang and Tao Liu
Electronics 2025, 14(12), 2319; https://doi.org/10.3390/electronics14122319 - 6 Jun 2025
Viewed by 353
Abstract
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization [...] Read more.
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization framework is introduced, enhancing frequency synchronization accuracy and robustness in low-SNR environments through bit synchronization techniques. Specifically, the approach constructs a “bit synchronization-frequency synchronization” joint correction mechanism, where clock offset information extracted during the bit synchronization process is utilized to estimate frequency offset. This method enables an indirect measurement and compensation of carrier frequency offset, forming a hierarchical error compensation system. Furthermore, to overcome the limited convergence speed of the classical Gardner algorithm under significant phase offset conditions, an improved error feedback structure is proposed, accelerating bit synchronization convergence and reducing timing synchronization errors, thereby enhancing overall system performance. The effectiveness of the proposed method is validated through theoretical analysis and simulation experiments. Simulation results demonstrate that, compared to conventional frequency synchronization schemes, the proposed method achieves higher frequency correction accuracy in low-SNR scenarios, thereby improving the robustness and anti-interference capability of wireless communication systems in complex environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

23 pages, 3587 KiB  
Article
Anchor-Free SNR-Aware Signal Detector for Wideband Signal Detection Framework
by Chunhui Li, Xin Xiang, Hu Mao, Rui Wang and Yonglei Qi
Electronics 2025, 14(11), 2260; https://doi.org/10.3390/electronics14112260 - 31 May 2025
Viewed by 370
Abstract
The spectrogram-based wideband signal detection framework has garnered increasing attention in various wireless communication applications. However, the front-end spectrograms in existing methods suffer from visual and informational deficiencies. This paper proposes a novel multichannel enhanced spectrogram (MCE spectrogram) to address these issues. The [...] Read more.
The spectrogram-based wideband signal detection framework has garnered increasing attention in various wireless communication applications. However, the front-end spectrograms in existing methods suffer from visual and informational deficiencies. This paper proposes a novel multichannel enhanced spectrogram (MCE spectrogram) to address these issues. The MCE spectrogram leverages additional channels for both visual and informational enhancement, highlighting signal regions and features while integrating richer recognition information across channels, thereby significantly improving feature extraction efficiency. Moreover, the back-end networks in existing methods are typically transferred from original object detection networks. Wideband signal detection, however, exhibits task-specific characteristics, such as the inherent signal-to-noise ratio (SNR) attribute of the spectrogram and the large variations in shapes of signal bounding boxes. These characteristics lead to issues like inefficient task adaptation and anchor mismatch, resulting in suboptimal performance. To tackle these challenges, we propose an SNR-aware detection network that employs an anchor-free paradigm instead of anchors for signal detection. Additionally, to address the impact of the SNR attribute, we design a trainable gating module for efficient feature fusion and introduce an auxiliary task branch to enable the network to capture more discriminative feature representations under varying SNRs. Experimental results demonstrate the superiority of the MCE spectrogram compared to those utilized in existing methods and the state-of-the-art performance of our SNR-aware Net among comparable detection networks. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop