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Abstract: The spectrogram-based wideband signal detection framework has garnered
increasing attention in various wireless communication applications. However, the front-
end spectrograms in existing methods suffer from visual and informational deficiencies.
This paper proposes a novel multichannel enhanced spectrogram (MCE spectrogram)
to address these issues. The MCE spectrogram leverages additional channels for both
visual and informational enhancement, highlighting signal regions and features while
integrating richer recognition information across channels, thereby significantly improving
feature extraction efficiency. Moreover, the back-end networks in existing methods are
typically transferred from original object detection networks. Wideband signal detection,
however, exhibits task-specific characteristics, such as the inherent signal-to-noise ratio
(SNR) attribute of the spectrogram and the large variations in shapes of signal bounding
boxes. These characteristics lead to issues like inefficient task adaptation and anchor
mismatch, resulting in suboptimal performance. To tackle these challenges, we propose an
SNR-aware detection network that employs an anchor-free paradigm instead of anchors
for signal detection. Additionally, to address the impact of the SNR attribute, we design a
trainable gating module for efficient feature fusion and introduce an auxiliary task branch
to enable the network to capture more discriminative feature representations under varying
SNRs. Experimental results demonstrate the superiority of the MCE spectrogram compared
to those utilized in existing methods and the state-of-the-art performance of our SNR-aware
Net among comparable detection networks.

Keywords: wideband signal detection framework; enhanced spectrogram; detection
network; feature fusion; prior knowledge

1. Introduction

Regulatory agencies, equipment manufacturers, and operators have recently been com-
mitted to advancing shared spectrum technologies in the 3.5 GHz and 5 GHz unlicensed
bands such as the Citizens Broadband Radio Service (CBRS) and 5G New Radio-Unlicensed
(5G NR-U) to further develop their commercial potential [1]. However, the increasingly
dense access of wireless devices has led to severe spectrum congestion, necessitating dy-
namic coexistence among the devices through spectrum monitoring. For example, the CBRS
band being opened offers significant opportunities for 5G and IoT applications, provided
that radar signals are effectively sensed and protected from interference [2]. Consequently,
signal detection and classification, which play a fundamental role in spectrum monitoring,
have become increasingly important.
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Traditional approaches to signal detection and classification are typically conducted
in two separate steps [3]. First, most signal detection methods focus solely on signal pres-
ence and exhibit drawbacks such as strict requirements for prior information and high
computational complexity [4]. Second, most signal classification methods are designed for
narrowband classification, assuming that the classification is performed in independent
narrowband transmissions [5]. However, in complex shared-spectrum scenarios, signals
must dynamically coexist while dealing with mutual interference and overlap. In these
conditions, narrowband classification methods encounter significant performance degra-
dation [6]. Moreover, traditional two-step approaches struggle to characterize parameters
such as bandwidth and dwell time for multiple signals. These limitations pose increasing
challenges for wireless applications to benefit from traditional methods.

Recently, a spectrogram-based framework for signal detection, classification, and time—
frequency localization has attracted widespread attention. It comprises two components:
the front-end spectrogram converted from time series and the back-end object detection
network [7] from computer vision. The framework is termed wideband signal detection,
drawing an analogy to the terminology of object detection. Here, “wideband” highlights
its applicability to a wideband receiver scenario, where multiple signals may be randomly
distributed across the sample bandwidth with varying time spans. With the dimensional
advantage of spectrograms and the multi-task property of object detection, this approach
not only enables joint detection and classification of multiple signals but also facilitates their
localization in the time—frequency domain [8]. This signifies that the framework can provide
more comprehensive time—frequency contextual information, which cognitively empowers
the transceiver to make intelligent decisions. These distinct advantages have made it
highly popular in various applications, such as wideband modulation classification [5,9,10],
spectrum sensing [2,6,8,11,12], RE-based drone detection [3], frequency-hopping signal
detection [13], and RF interference (RFI) detection [14].

The initial exploration into the wideband signal detection framework can be traced
back to O’Shea et al.’s work [15], where a simple detection network was employed for
detecting and localizing radio signals. Subsequent studies have centered on the transfer
attempts of various networks at the backend of the framework. Faster R-CNN [16] was
first utilized in [8,11] to identify and locate Wi-Fi signals, demonstrating clear advantages
over morphological processing methods. However, as a two-stage detection network,
Faster R-CNN suffers from slower inference speeds. To address this limitation, a one-stage
detection network, single-shot multibox detector (SSD) [17], has been explored in [9,14].
In [9], SSD was trained for modulation classification of multiple signals, achieving signifi-
cantly improved processing speed but relatively poorer performance compared to Faster
R-CNN. Another popular one-stage network, the You Only Look Once (YOLO) series [18],
has also been widely investigated due to its excellent balance between performance and
speed. Among these, YOLOvV3 [19] has garnered particular attention [2,5,10,12]. In [5],
YOLOVvV3 was utilized for joint detection and modulation classification on 10 modulation
schemes, exhibiting performance comparable to Faster R-CNN at higher SNR levels but
underperforming at lower SNR levels. Beyond YOLOV3, other YOLO variants have also
been investigated [3,6,13].

Despite the progress made in the above studies, the current framework is often non-
task-oriented, primarily focusing on intuitively applying object detection networks to
spectrograms. To further enhance the framework’s performance, we are facing two key
challenges as follows.

1.  Front-end spectrograms are underexplored and visually/informationally limited.

Specifically, existing studies have only considered two types of spectrograms:

grayscale spectrograms obtained through short-time Fourier transform (STFT) and
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RGB spectrograms derived by applying pseudo-color processing to the grayscale
spectrograms. Visually, as the SNR decreases, the contrast between foreground sig-
nals and background noise rapidly diminishes in these spectrograms, resulting in
indistinct signal regions and time—frequency characteristics. Moreover, they provide
limited information gain for recognition and are prone to information degradation.
Since spectrograms serve as the data input, these deficiencies can hinder the quality
of feature representations extracted by back-end networks.

Back-end networks lack task-specific customization. Specifically, the aforementioned
networks are designed for generic object detection datasets [20], which differ sig-
nificantly in data manifold characteristics from spectrogram datasets. For example,
most existing methods are transferred from the anchor-based networks. However,
the signal bounding boxes in spectrograms exhibit more diverse sizes and aspect
ratios due to the variability in signal transmission parameters, which makes these
anchor-parameter-sensitive networks [21] easily encounter anchor mismatch and
performance degradation. Additionally, unique task attributes, such as the SNR,
can lead to potential feature impairment and misalignment. The domain-specific
prior knowledge related to these attributes has not been effectively incorporated into
network design, resulting in limited performance improvements.

To address the aforementioned problems, we propose an enhanced wideband signal

detection framework that introduces improvements to both the front-end spectrogram and

the back-end network. The main contributions of this paper are summarized as follows.

1.

At the frontend of the framework, a novel multichannel enhanced spectrogram (MCE
spectrogram) is proposed. First, a visual enhancement channel is added alongside
the base channel to establish a prior attention mechanism. This enables the back-
end network to focus more effectively on foreground signals and capture salient
visual features. Additionally, an information complementary channel is introduced
to explicitly encode extra recognition information within the signal region, thereby
improving the semantic feature learning capability of the network.

At the backend of the framework, we propose a novel SNR-aware network (SNR-
aware Net) based on a critical distinction between wideband signal detection and
object detection, namely SNR. Firstly, a trainable time—frequency feature gating ag-
gregation module (TFFGAM) is integrated into the neck network, facilitating more
task-oriented feature fusion. Furthermore, a multi-task detection head is introduced,
which employs the anchor-free paradigm for better generalization to signals with
varying bandwidths and durations. In addition to performing classification and
regression tasks, the head adds an auxiliary task branch to incorporate the prior
knowledge that signals exhibit differentiated characteristics at varying SNRs. This
branch enables SNR awareness, effectively alleviating training ambiguities caused by
feature misalignment and preventing the network from fitting to weakly discrimina-
tive feature representations.

To evaluate the performance of the MCE spectrogram, we integrate it into several state-
of-the-art detection networks designed for wideband signal detection and compare
these networks with their counterparts based on traditional spectrogram baselines. We
also compare these networks with the proposed SNR-aware Net. Experimental results
demonstrate the modality superiority of the MCE spectrogram and the state-of-the-art
performance of SNR-aware Net. Additionally, we conduct complexity comparisons
and ablation experiments to further analyze the effectiveness of the MCE spectrogram
and SNR-aware Net.

The rest of this paper is structured as follows. Section 2 reviews the existing research on

the wideband signal detection framework. Section 3 explains the motivations for modifying
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the front-end spectrogram and back-end network. Details of the MCE spectrogram and
SNR-aware Net are provided in Section 4. Performance analysis is presented in Section 5,
followed by concluding remarks in Section 6.

2. Related Work

Recent studies have increasingly combined spectrograms and other time—-frequency
representations (TFRs) with computer vision methods, offering new approaches to signal
processing challenges. In this section, we first compare two prominent research areas—
signal classification and the wideband signal detection framework—highlighting the tech-
nical advantages of the latter. Then, the existing research on wideband signal detection
framework is reviewed according to two aspects.

2.1. From Narrowband Signal Classification Towards Wideband Signal Detection Framework

The need for better signal classification performance has driven the combination
of TFRs with various powerful image classification models. TFR-based signal classifica-
tion can be divided into modulation classification [22-24] and radio access technology
classification [1,25,26], both extensively investigated. However, these studies focus on nar-
rowband signal classification, where the TFR utilized as a training sample cannot be directly
derived from the compound signals to establish a one-to-one correspondence with the cate-
gory label. Traditional two-step methods for signal detection and classification have relied
on techniques such as refined channelization designs [27] or blind signal separation [28] to
satisfy the narrowband classification assumption. Nevertheless, meeting this constraint
becomes increasingly difficult in the noisy spectrum, resulting in performance degradation.
To address the challenges of wideband classification for compound signals, two new ap-
proaches have been attempted. The first approach involves traversing all possible signal
combinations and assigning them mutually exclusive class labels [1]. However, this method
becomes computationally infeasible as the number of signal classes grows. An alternative
approach inspired by multi-label image classification has also been explored [29], where
compound signals are assigned a label vector containing the semantic meanings of all
mixed components [30]. Despite its potential, this method faces challenges such as class
imbalance and complex labeling requirements. Additionally, critical parameters like signal
bandwidth and duration cannot be derived from a sole classification task.

The growing need for wideband signal processing, coupled with the benefits of time-
frequency localization, has led to increased attention on another computer vision task,
object detection. Object detection involves detecting, classifying, and locating all instances
within an image using a multi-output architecture. When applied to TFRs, this approach
gives rise to the wideband signal detection framework [15].

2.2. Wideband Signal Detection Framework
2.2.1. Front-End Spectrogram

Although various time-frequency transformations, such as the smooth pseudo Wigner—
Ville distribution [22,24] and S-transform [23,25], have been applied in signal classification,
studies on the wideband signal detection framework have predominantly favored and
all chosen STFT-based spectrograms. This preference is attributed to the simplicity of
implementation, computational efficiency, and absence of cross-term interference in multi-
signal scenarios that STFT offers. Existing spectrograms can be categorized into two types
based on their visual modality: grayscale spectrograms, as utilized in [6,8-11,13], and
pseudo-color RGB spectrograms, as employed in [3,5,12]. Furthermore, variations in the
selection of STFT parameters result in differences in spectrogram size and resolution. For
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instance, [11] utilized a window length and overlap of 5600 and 2800 points, respectively,
while [13] adopted a shorter 256-point window with a larger 91% overlap.

Despite these efforts, limited attention has been devoted to addressing the visual and
informational limitations of existing spectrograms. This gap highlights the need for further
research into enhancing the quality and effectiveness of spectrograms in the wideband
signal detection framework.

2.2.2. Back-End Detection Network

As discussed earlier, previous studies have investigated various object detection
networks. In these attempts, the networks have undergone certain modifications that
primarily focus on two aspects. The first aspect involves utilizing the Intersection over
Union (IoU)-series localization loss functions [31] for more precise regression. For instance,
Generalized IoU (GloU) loss [32] was used in [5,13], while Complete IoU (CloU) loss [33]
was adopted in [10,12]. Additionally, Distance IoU (DIoU) [33] was utilized during inference
in [10] to improve the accuracy of non-maximum suppression. Secondly, efforts have been
made to reduce the network size for greater efficiency. Considering the relatively simpler
nature of signal detection in spectrograms compared to object detection in natural images,
downscaled variants were employed in [8,15]. Furthermore, to enhance inference speed,
Refs. [12,13] replaced the original backbone networks with lightweight architectures such
as GhostNet [34] and MobileNet [35], respectively.

Despite these modifications, most approaches have directly borrowed techniques from
object detection without accounting for the fundamental differences between wideband
signal detection and object detection tasks. As a result, these adaptations may lead to
limited performance improvements or even no effect at all. A critical distinction lies in the
consideration of SNR, which has been largely overlooked in prior studies. Unlike object
detection, where targets in natural images are not typically associated with varying SNRs,
spectrograms derived from time series inherently possess an SNR attribute. Therefore,
analyzing the impact of SNR on aspects such as feature extraction and network training
is essential for developing more targeted and effective network components tailored to
wideband signal detection.

3. Motivation
3.1. Towards a More Spectrogram-Centric Framework

Previous works have tended to be network-centric, focusing on the attempts of various
back-end detection networks [4,5]. However, this approach has certain limitations. First,
these networks are designed for specific object detection datasets, leading to a decline
in performance when directly applied to spectrograms. Moreover, it involves complex
parameter tuning and layer configurations [8], impacting deployment efficiency.

In contrast, we prioritize a spectrogram-centric framework, which offers more consis-
tent and rewarding outcomes. Given their data-driven nature, various network models
inherently reflect the trained data, making high-quality data crucial for ensuring predictable
performance [7]. Further, unlike natural images, spectrograms are derived from a transfor-
mation process before being used as an input modality. This transformation step provides
an opportunity to enhance the spectrogram itself, thereby increasing signal separability
and improving the training efficiency and performance of the back-end network.

3.2. Towards a More Tailored SNR-Specific Framework

Previous studies have actually approached the framework from a visual perspec-
tive, aiming to optimize performance by transferring well-established object detection
networks [4,15]. While this approach has yielded some success, task-specific networks with



Electronics 2025, 14, 2260

6 of 23

superior performance often require reliance on prior domain knowledge. Our motivation
lies in treating the framework as both a visual task and a domain-specific task. To this
end, our modifications leverage both insights from object detection and the distinctions
between wideband signal detection and object detection, enabling the customization of
more prior-knowledge-guided network components. We specifically focus on the key
difference, SNR, and analyze its impacts on the network as follows.

(1) Impaired Feature Representations Due to the SNR Attribute. In natural images,
foreground objects and backgrounds are clearly separated, allowing networks to extract fea-
tures from their respective regions. However, due to the inherent SNR attribute, foreground
signals in spectrograms are always noise overlap-added, resulting in inevitably impaired
feature extraction from signal regions [8]. While feature fusion offers a potential solution to
this issue, the feature fusion components in object detection networks are designed based
on the characteristics of generic objects and are not well suited to recalibrating the impaired
features encountered in wideband signal detection. Therefore, it is necessary to design a
more targeted feature fusion mechanism to obtain more robust feature representations.

(2) Feature Misalignment Due to Varying SNRs. Due to varying degrees of noise influ-
ence, even signals of the same class exhibit differentiated time—frequency characteristics
at different SNRs. This differentiation differs from the concept of intra-class diversity, but
rather a result of the random impairment of signal features by noise. However, relying
solely on the gradients of the classification loss forces the network to fit the signals with
the same class but varying SNRs, thereby suffering from the misalignment of the differ-
entiated and impaired features. It introduces training ambiguity and causes the network
to collapse into non-critical feature representations. This is distinct from object detection,
and putting the solution to such SNR-specific challenges into the object detection pipelines
will not be effective. In contrast, when humans identify signals in spectrograms, prior
knowledge about the differentiated features at varying SNRs is naturally utilized. Typically,
this involves first assessing the SNR range and then recognizing signals based on the
specific features exhibited at particular SNRs. Motivated by this observation, our goal is to
incorporate this prior knowledge into the network design, enabling the network to become
SNR-aware. By doing so, the network can effectively capture more discriminative features
along both the signal class and SNR dimensions during training, thereby alleviating the
feature misalignment.

4. Methodology

The improved framework is described in detail in this section, comprising the front-
end MCE spectrogram and the back-end anchor-free SNR-aware Net. The pipeline is
illustrated in Figure 1, where SNR-aware Net is decoupled into three components: the
backbone network, the neck network, and the detection head.

4.1. MCE Spectrogram

Let x(k) be the sampled time series. The discrete Fourier transform is computed and
then added to the complex-valued matrix S(n,m) to obtain the STFT of x(k):

S(n,m) = Nf e 2R w(k)x(k + m(N — 0)), (1)
k=0

where w is an analysis window of length N. The window slides over x(k) at an overlap of
O samples between adjoining segments. n and m are the frequency bin (row) index and
time bin (column) index of S, respectively.
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Figure 1. Overview of the proposed framework. The dimensions 64 x 128 x 128 represent the number
of channels, height, and width of the feature maps, respectively. The CBR unit refers to a convolution
layer followed by a Batchnorm layer and an ReLU layer. The size of the convolution kernel is denoted
as 1 x 1, and C represents the amount of output channels from the convolution.

The spectrogram is defined as the squared magnitude of S, given by P = S§*. Previ-
ous studies utilize the log-transformed spectrogram and the RGB spectrogram as input.
However, considering the characteristics of the spectrogram and network, it is necessary to
reexamine these spectrograms from both visual and informational perspectives:

Firstly, spectrograms are fed into the network as an image-like modality. A central
theme of processing vision tasks with the network is to capture the most salient visual fea-
tures for a given task from foreground targets. However, as the SNR decreases, foreground
signals in these spectrograms are quickly overwhelmed by background noise, resulting in
unclear signal features such as textures.

Secondly, the information encoded in the variations between time—frequency bins is
what signal recognition inherently needs. Correspondingly, the network naively learns
crucial semantic features through end-to-end training by activating informative regions.
However, these spectrograms provide only limited information gains. Specifically, the
grayscale spectrogram, being a single-channel matrix, is highly susceptible to interference.
The RGB spectrogram is a pseudo-color representation, which does not provide additional
information but may introduce mapping errors.

To address the limitations of the above spectrograms, we propose the MCE spectro-
gram by leveraging channels for both visual and informational enhancement, as illustrated
in Figure 2. The details of each channel are outlined below.

4.1.1. Channel 1 (Base Channel)

The log-transformation enables better control over the dynamic range of the spectro-
gram matrix, facilitating the emphasis on variation details with low grayscale intensity. As
a result, the log-transformed spectrogram matrix is assigned to the first channel, which
serves as a base channel of the overall MCE spectrogram. It provides a visually com-
prehensive view of foreground signals and background noise while preserving sufficient
time—frequency contextual information.
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Figure 2. An illustration of the MCE spectrogram.

Furthermore, the base channel is utilized to anchor the size of the MCE spectrogram to
512 x 512. This input size not only effectively satisfies the performance-speed trade-off but
also ensures the equilibrium of the receptive field along the time and frequency directions
during subsequent convolution operations. Additionally, this size aligns with common
practices in computer vision tasks, making it easier to reference complex network layer
configurations and avoiding information loss from resizing operations.

After obtaining the spectrogram matrix P, we further log-transform and normalize it
to [0, 255] using the following;:

Plog - min(Plog)
max(ﬂog) - min(Plog)

Plog = 1010g10P, P, = x 255, (2)

where the matrix P is ultimately placed in the first channel.

4.1.2. Channel 2 (Visual Enhancement Channel)

A visual enhancement channel is then introduced to emphasize foreground signals
over background noise, thereby effectively improving the visual feature extraction efficiency
of the back-end network. Specifically, we propose a novel statistical thresholding method
based on histogram statistics of the spectrogram to filter out pixels in the noise region and
retain those in the signal region without relying on SNR information.

As shown in Figure 3, the histogram statistical characteristics of P,1, derived from the
mixed signal in Figure 2, vary at different SNR levels. Here, SNR is defined as the ratio of
the mixed signal, which contains multiple signal components, to the background noise. At
higher SNRs, the intensity values of the signal and noise regions are clearly distinguishable,
resulting in a bimodal histogram distribution. As the SNR decreases, these distributions
gradually overlap, leading to reduced contrast and less distinct signal areas. Notably, it can
be also observed that the statistical distribution of the noise presents similarity. Specifically,
t75 in Figure 3 represents an intensity value where pixels with values lower than ¢75 account
for 75% of the total pixel count (i.e., 512 x 512 x 0.75). Although the four specific t75 values
differ across SNRs, they are positioned similarly in the distribution. Thus, a statistical
threshold can be effectively set to filter out a consistent percentage of noise while preserving
foreground signals, even across varying SNRs.
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Figure 3. Histogram statistics of the matrix P,; generated from the same signal at (a) SNR = 10 dB,
(b) SNR =5 dB, (c) SNR = 0 dB, and (d) SNR = —10dB.

The threshold P,; is then assigned to the second channel, which establishes a prior,
equivalent attention mechanism, enabling the back-end network to better focus on and
capture features of the signal regions. As shown in Figure 2, the contrast between the
foreground signals and background noise of P, is markedly improved. Moreover, the
signal regions are distinctly highlighted after channel concatenation.

4.1.3. Channel 3 (Information Complementary Channel)

In addition to the intuitive visual feature impairment, implicit information degra-
dation also significantly impacts the performance. To address this issue, we introduce a
information complementary channel to perform the informational enhancement. It explic-
itly incorporates more recognition information across the channels, thereby improving the
semantic feature extraction efficiency of the back-end network.

We naturally introduce P due to the following considerations: (1) While P,; enhances
details in low-grayscale-intensity areas, it compresses and impairs high-intensity regions.
The matrix P serves as a complementary component, explicitly introducing additional
recognition information into the spectrogram. (2) Compared to P,;, P undergoes an equiva-
lent antilogarithm transformation, visually emphasizing high-intensity areas. As a result,
important signal features such as outlines and textures are further highlighted, as depicted
in Figure 2. (3) Since P is an intermediate matrix in the generation of P, it can be de-
rived without additional computational complexity. After using the same normalization in
Equation (2), the matrix P is assigned to the third channel.

Figure 4 depicts a visual comparison of the MCE spectrogram, grayscale spectrogram,
and RGB spectrogram (using the same colormap as in [3,5,12]) at -5dB SNR. By contrast, the
MCE spectrogram, obtained by concatenating three channels, is a true-color representation
without a color bar. It not only highlights signal regions and texture features more distinctly
but also integrates more signal recognition information across the channels. Moreover,
the MCE spectrogram is concise, as its three channels can be obtained through a single
STFT operation.
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Figure 4. Visual comparison of the three spectrograms at —5 dB SNR.

4.2. SNR-Aware Net

As illustrated in Figure 1, SNR-aware Net comprises three components: (1) the back-
bone, responsible for feature extraction; (2) the neck, incorporating a TFFGAM for feature
fusion and recalibration; and (3) the detection head, consisting of four branches to perform
signal classification, time—frequency coordinate regression, and SNR awareness.

4.2.1. Backbone

Wideband signal detection within the MCE spectrogram involves lower task complex-
ity than object detection in natural images, obviating the need for a backbone network with
excessive model complexity. As a result, we have adopted ResNet-18 [36] as our backbone
among various models. As depicted in Figure 1, the backbone generates four different
levels of feature maps, C2-C5, each with varying channels and down-sampling ratios.

4.2.2. Neck

As mentioned earlier, the SNR attribute is accompanied by impaired feature repre-
sentations. Nevertheless, different levels of the feature hierarchy contribute differently to
signal detection and recognition at different SNRs. At higher SNRs, signal textures are more
distinct, making low-level features more effective. As SNR decreases, clear visual features
become distorted, and higher-level features become more important due to their stronger
semantic content and implicit robustness to noise, which arises from the smoothing effect
of multiple convolution operations. Therefore, it is essential to design a targeted neck com-
ponent to effectively leverage and fuse features from different levels, thereby enhancing
the quality of feature representations. However, previous studies have largely overlooked
the importance of the neck. Some approaches either omit this component or directly adopt
original neck architectures designed based on the characteristics of generic objects such as
the Feature Pyramid Network [37], leading to suboptimal fusion effectiveness.

We propose a TFFGAM to achieve more task-oriented feature fusion, as illustrated in
Figure 1. Firstly, each of C2-C5 undergoes a CBR unit with 64 channels. Subsequently, we
upscale the resolutions of C3-C5 to 128 x 128 using interpolation with different ratios to
obtain F;-F;. To simplify network training, we use nearest-neighbor interpolation instead of
transpose convolution. After that, F;-F; are sent to four CBR units to reduce their channel
dimension to 16 for memory efficiency. They are then concatenated and passed through a
shared 1 x 1 convolution layer, producing G € R**128%128_To ensure that the weights sum
to 1, we apply the softmax function to process G along the channel dimension, yielding
four gating weight maps {W; € RIx128x128 j < {1,2,3,4}}. Finally, these weight maps

are broadcasted and used to reweight F;-F;, generating the final refined feature maps
E, € RO4x128x128.

4
i=1
where [-] denotes element-wise multiplication. During the above process, the parameters of

the weight maps are learnable, enabling the network to automatically fuse effective features
while suppressing those that are heavily degraded by noise.
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4.2.3. Head

Anchor-based heads rely on the pre-defined anchor boxes to match target boxes,
which often encounter anchor mismatch issues due to the variability in signal bandwidth
and duration. In contrast, anchor-free heads eliminate this problem and offer a more
straightforward solution for wideband signal detection. In this study, we employ a keypoint-
based anchor-free paradigm. As illustrated in Figure 1, the feature maps from the neck are
fed into four task branches. The heatmap branch generates a keypoint heatmap, where the
peaks in the heatmaps are used to locate the center points of signals. Signal classification is
performed based on the responses across the channel dimension at these peak locations.
The offset branch compensates for the regression errors of the center point coordinates,
while the size branch predicts the height and width of the target. Additionally, we add an
auxiliary task branch for SNR awareness.

(1) Heatmap branch

The heatmap branch finally generates the predicted keypoint heatmaps Yc,x,y €
[0, 1]rum_classesx128x128 'y here each channel corresponds to a signal class. A prediction
1761,X1,y1 = 0.9 indicates the presence of a signal of category c; with its center at (x1,y;) and
a class confidence of 0.9.

The ground truth (GT) heatmaps Y., are derived by splatting the GT center points
in the original image onto the equivalent low-resolution heatmaps using a 2D Gaussian
kernel. For example, assuming the existence of a signal of the category ¢y with its center at
0 = (0y,0y) in the original image, the GT heatmaps can be obtained by

(x=0)°+ (y - oy>2>, "

where 0 = (0y,0y) = | 7] represents the equivalent center point, and ¢ is the adaptive
standard deviation relative to the size of bounding boxes. In the coth channel, the GT value
at 0 is 1, gradually diminishing to 0 away from the center point. We use the Gaussian focal
loss [38] to train the heatmap branch:

(1- chx,y)“log(f/c,x,y) if Yc,x,y =1

-1
Ly, =— kv Y 5
i N c;:y (1 o YC,X,y)ﬁ(Yc,x,y)lx otherwise ©

log(1 — Yc,x,y)

where N is the number of center points, and the hyperparameters « and f§ are set to two
and four, respectively.

(2) Offset branch

Equation (4) reveals the rounding errors that occur between the coordinates of center
points in the original image and their equivalent integer-valued coordinates in the GT
heatmap. The inherent imprecision of the GT center points will lead to imprecise predicted
center coordinates. To address this issue, the offset branch is introduced to predict the
center offset maps O € R2*128X128 compensating for each center point during the decoding
process. We use the smooth L1 loss to train the regression of the offset branch:

Loff = ;]i%lsmoothu (Oz - (Z — E)), (6)
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where N, o, and 0 have the same meaning as above, indicating that the offset loss only acts
on the center point positions. The smooth L1 loss is described by

05x%,  if |x| <1
smoothy(x) = * if | (7)
|x|] —0.5 otherwise.

(3) Size branch

After obtaining the categories and center points of the signals, it is then necessary to
regress their sizes. Therefore, the size branch is used to predict the size maps § € R?*128x128,
where the two channels correspond to the predicted height and width of the signal box,

respectively. We also employ the smooth L1 loss to train the size branch:

1
N :
1

™M=

smoothy 1 (SAZ — Si)/ (8)

Lgize =

1

where S is the GT size.

(4) SNR branch

As previously discussed, the time—frequency characteristics of signals such as the
outlines and textures, exhibit significant variations across different SNRs. For a network
that is driven solely by the gradients of classification loss, these variations and impairments
in features at different SNRs can lead to feature misalignment, negatively impacting both
network training and performance. To mitigate this issue, we utilize the prior knowledge
that signals exhibit varying characteristics at varying SNRs to modify the network architec-
ture. Specifically, as shown in Figure 1, an SNR branch is introduced to make the network
SNR-aware. This branch explicitly establishes a mechanism that enables the network to
treat both category and SNR as inherent attributes of the signal during feature learning. By
doing so, the network captures more prior-knowledge-guided category differences through
an approach similar to attribute recognition. In this process, the classification task-related
gradient backpropagation is optimized, reducing training ambiguity caused by feature
misalignment and preventing the network from falling into fewer discriminative features.

Specifically, to enhance the efficiency of training convergence, we approach the SNR
awareness as a classification problem rather than a regression one by assigning distinct
class labels to different SNR ranges. The focal loss [21] is utilized to train the SNR branch:

N
Lsnr = L Y Liocal (Pir Pi), ©)

N =
where p; is the GT SNR labels and p; is the predicted N;D vector. N; is the number of
classified SNR ranges. Following [21], we adopt a strategy of training N binary classifiers
instead of utilizing a multi-class classifier. For each binary classifier, focal loss can be

described as

—pu(1=9)"log(y),  ify=1

(10)
—(1—u)y?log(1 —7) otherwise,

Lfocal (}?I y) =

where 7 is the predicted probability for the GT class with label y = 1. The hyperparameters
u and 7y are set to 0.25 and 2, respectively.
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5. Experiments

5.1. Experimental Settings
5.1.1. Dataset Generation

Figure 5 illustrates the workflow for creating a labeled dataset, which combines both
synthetic signal generation and real-world data capture techniques. Specifically, the labels
for the spectrograms are automatically generated by logging the parameters used during the
synthetic data generation process. These parameters are detailed in Table 1. The signals are
then transmitted and collected over-the-air, introducing real-world impairments. To ensure
label consistency between the transmitter and receiver, we implemented a synchronization
mechanism that periodically transmits preambles. For signal collection, we used a custom
RF transceiver equipped with a vertically polarized omnidirectional antenna.

preamble
preamble

Figure 5. Process of generating dataset and labels.

Evaluating the performance of the proposed method at different SNR levels is neces-
sary. However, with practical signals, it is challenging to precisely control the SNRs. To
address this, we adopt the approach from [3] by adding raw signals and additive white
Gaussian noise (AWGN) to build datasets with varying average SNRs (SNRavemgg). Since
the power and bandwidth differ for signals in a multi-signal scenario, the actual SNR for
each signal can vary slightly [3]. Therefore, the SNR of each signal (SNRSig) is also calcu-
lated to obtain the class labels of the SNR range for training the SNR branch. Specifically,
the coordinate labels are first utilized to automatically locate the signal and noise regions in
the time—frequency domain. Next, we average the signal and noise areas along the time
dimension to obtain their equivalent frequency-domain representations. Following this,
the frequency—domain SNR calculation method [3] is applied to estimate the SNR for each
signal. This approach can be easily integrated into the labeling process, whether through
automatic label generation or manual annotation, and temporal averaging helps reduce
estimation errors. A total of 2500 samples are generated at each SNRperage. We divide the
training, validation, and test sets in a 4:2:4 ratio. After calculating the SNRy;,, we convert
it into the class label. The correspondence is as follows: [-20 dB, —16 dB]~0, [-15 dB,
—11 dB]~1, [-10 dB, —6 dB]~2, [-5 dB, —1 dB]~3, [0 dB, 5 dB]~4, and [6 dB, 15 dB]~5.

Table 1. Parameter settings of dataset generation.

Parameters Range of Values

Number of signals [5, 8]

Time—frequency span of spectrogram 182.4 ms/720 kHz

Duration of each signal [45.6 ms, 182.4 ms]

Signal categories BPSK, QPSK, 2ASK, 16QAM, 2FSK,
4FSK, MSK, FM, AM-DSB

Symbol rate of each signal [24 kHz, 40 kHz]

SNRgverage [—20 dB, 15 dB]
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5.1.2. Evaluation Metrics

Considering the multi-task property of the framework, we adopt widely-used metrics
from object detection, including average precision (AP), mean AP (mAP), and mean average
recall (mAR) [39]. AP measures both the accuracy of signal classification and the precision
of time—frequency localization for each category. mAP is the mean of APs across all
categories. mAR, similar to the probability of detection, evaluates the detector’s ability to
find all signals of interest. These metrics achieve high scores only when the signals are fully
detected, accurately classified, and precisely localized. To ensure a rigorous evaluation,
these metrics are calculated at all intersection over union (IoU) thresholds.

5.1.3. Implementation Details

To assess the modality superiority of the MCE spectrogram, we combine it with
SNR-aware Net and three other state-of-the-art networks used in previous works. We
then compare these combinations with counterparts based on the baseline spectrograms
(grayscale and RGB). Additionally, we conduct a comprehensive evaluation to verify the
superior performance of SNR-aware Net compared to these networks. The details of the
networks are as follows:

e  Faster R-CNN: For a fair comparison, we adjust Faster R-CNN as suggested in [8],
including configuring the backbone as pre-trained VGG-13 and reducing channels.

e SSD: Following [9], the backbone is configured as VGG-16, with default anchor settings
and loss functions.

*  YOLOvV3: Adjustments are made to YOLOV3 following [5], including configuring the
backbone as DarkNet-53 and replacing the localization loss function.

We utilize the AdamW optimizer and add 7.2 k warm-up iterations. The learning rate
is initialized to 1 x 1073 and decays using a cosine annealing scheduler. The models are
trained for 80 epochs with a batch size of 64, distributed on four NVIDIA Tesla K80 GPUs.

5.2. Performance Analysis
5.2.1. Effectiveness Verification of MCE Spectrogram

The comparison methods are not limited to specific combinations of networks and
spectrograms used in previous works. Instead, each network is paired with both grayscale
and RGB spectrogram baselines to provide a comprehensive comparison, as detailed in
Table 2. The results from the four sets of comparisons clearly show that networks using
MCE spectrograms consistently outperform their counterparts based on the spectrogram
baselines in terms of mAP and mAR. This superiority can be attributed to the enhanced
input data modality provided by the MCE spectrogram, which effectively improves the
training efficiency and performance of different back-end networks.

Moreover, the networks based on the MCE spectrogram show improvements across
all signal classes in terms of AP scores. As shown in Table 2, signals with distinct texture
characteristics, such as FSK and FM, achieve greater AP boosts due to the attention mecha-
nism established by the visual enhancement channel. This mechanism enhances the visual
feature extraction efficiency of the networks. Additionally, for visually similar signals such
as QPSK and QAM, the information gain from the information complementary channel
plays a crucial role. By adding more explicit information along the channels for semantic
feature learning during training, the recognition performance is improved.

Furthermore, we investigate the performance comparisons across different SNR levels,
as shown in Figure 6. Taking SNR-aware Net as an example, when the SNR exceeds —5 dB,
the MCE spectrogram achieves 9.4% and 8.3% higher mAPs compared to grayscale and
RGB spectrograms, respectively, along with 5.5% and 4.5% higher mARs. When the SNR
is between —20 dB and —5 dB, the mAP of the MCE spectrogram increases by 8.9% and
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6.6% over grayscale and RGB spectrograms, while the mAR increases by 8.1% and 6%,
respectively. Similarly, although the extent of improvement varies among networks, the
MCE spectrogram consistently provides performance gains for the other three networks
at both high and low SNRs, further demonstrating its modality superiority. This outcome
is expected because the visual enhancement channel enables the network to focus more
effectively on signal regions for feature extraction even at low SNRs. Additionally, the
information complementary channel provides additional information support at higher
SNRs and helps the recognition information encoded in signal regions less affected by noise
as SNR decreases.

Table 2. Performance comparisons in terms of AP (%), MAP (%), and MAR (%) between MCE
spectrogram and spectrogram baselines in combination with different detection networks.

Spectrogram Modality Detector mAP mAR BPSK QPSK 2ASK 16QAM 2FSK 4FSK MSK FM AM-DSB
Grayscale spectrogram 68.7 84.7 65.3 38.7 75.0 40.2 85.2 78.8 749 79.0 81.1
RGB spectrogram Faster RCNN [8] 71.0 852 63.7 41.7 76.1 51.1 846 804 753 832 82.9
MCE spectrogram 771 875 79.1 499 79.7 55.0 89.3 844 842 864 85.9
Grayscale spectrogram 643 816 622 343 71.1 334 788 753 719 749 76.9
RGB spectrogram SSD [9] 63.1  80.6 62.8 324 70.8 35.7 753 739 723 713 73.7
MCE spectrogram 706  83.0 63.0 52.7 75.5 51.1 822 774 738 814 78.6
Grayscale spectrogram 64.5 81.6 64.0 33.9 73.6 36.7 756 744 731 734 76.0
RGB spectrogram YOLOV3 [5] 65.7 825 64.4 31.1 73.0 38.9 809 762 725 751 78.7
MCE spectrogram 729 859 66.6 51.8 779 47.8 86.6 820 764 837 83.5
Grayscale spectrogram 719 841 67.4 54.8 75.6 53.9 833 780 741 813 79.0
RGB spectrogram SNR-aware Net 72.8 85.6 64.2 52.1 76.1 55.6 86.9 80.0 780 79.8 82.3
MCE spectrogram 809  90.7 74.1 64.9 822 64.6 924 883 835 89.6 88.8

MAR (Grayscale spectrogram)
MAR (RGB spectrogram)
—&— mAR (MCE spectrogram)

mAP (Grayscale spectrogram)
mAP (RGB spectrogram)
—6—— mAP (MCE spectrogram)
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Figure 6. Performance comparison versus SNR in combination with (a) Faster R-CNN, (b) SSD,

(c) YOLOV3, and (d) SNR-aware Net.
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5.2.2. State-of-the-Art Comparisons of the Detection Networks

For the performance comparison of the networks, we first observe the superior mAP
scores of SNR-aware Net in Table 2 when utilizing different spectrogram modalities as
input. Despite the improvements brought by the MCE spectrogram to various networks,
performance gaps still exist among them. Specifically, SNR-aware Net reports the best
results, outperforming Faster R-CNN, SSD, and YOLOv3 by 3.8%, 10.3%, and 8% in terms
of mAP, and by 3.2%, 7.7%, and 4.8% in terms of mAR, respectively.

To facilitate a clear comparison, we replot the performance versus SNR curves of the
four networks with the MCE spectrogram as input in Figure 7. In terms of mAR, SNR-
aware Net consistently outperforms the other networks at each SNR level. In terms of mAP,
Faster R-CNN performs better when the SNR is below —5 dB. This superior performance
of Faster R-CNN at low SNRs has been demonstrated in [5], as it is a two-stage region
proposal-based network, which is well suited for signal localization and identification.
Notably, despite all being one-stage networks, SNR-aware Net achieves significantly better
performance than SSD and YOLOv3 at low SNRs through more task-oriented feature fusion
and an efficient output paradigm, matching the performance of Faster R-CNN. When the
SNR exceeds —5 dB, the mAP of SNR-aware Net is clearly the highest among the compared
networks. To further investigate its superiority, we conduct further evaluations on the 5 dB
subtest set.

100
90
80

70

£60

Z 50
40
30
20

10,

Faster R-CNN Faster R-CNN
SSD {1 30r SSD
YOLOV3 i L YOLOV3
—&— SNR-aware Net —&— SNR-aware Net

~20 -15 <10 -5 0 5 10 15 —-20 -15 -10 -5 0 5 10 15
SNR (dB) SNR (dB)

Figure 7. Performance comparison of detection networks with MCE spectrogram as input.

First, we plot the precision-recall curves (PRCs) of the networks to visually compare
their joint classification and localization performance, as shown in Figure 8. It is evident
that the curve of SNR-aware Net consistently encloses the curves of the other networks
for each signal class, indicating its superior ability to detect more signals with higher
classification confidence and more precise regression.

Furthermore, we plot confusion matrices to visualize the classification performance
of the four networks, as depicted in Figure 9. The rows represent the true classes, and the
columns represent the predicted classes. The diagonal cells correspond to the correctly
detected true positives (TPs). The last column represents background false negatives (FNs),
which are missed GTs. The last row represents background false positives (FPs), which
are detections predicted as a certain class but with IoUs below the threshold with all
GTs. The other cells represent FPs, where the detection’s IoU with a certain GT exceeds
the threshold, but the class does not match. As shown in the second row of Figure 9a,
the detector misses 144 QPSK signals. Additionally, while correctly detecting 750 QPSK
TPs, there are 558 16QAM FPs within the QPSK GT regions due to confusion between
QPSK and 16QAM. A similar issue is observed in the fourth row, indicating that Faster
R-CNN struggles to accurately distinguish between QPSK and 16QAM. Figure 9b,c show
slight improvements achieved by SSD and YOLOV3, but they still exhibit poor recall and
regression accuracy, leading to more background FNs and FPs. In contrast, Figure 9d



Electronics 2025, 14, 2260 17 of 23

demonstrates the superior performance of SNR-aware Net, which effectively differentiates
each signal class and reduces misses and background FNs.
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1 ‘ ‘ 1 I 15 : ‘ 1 : : M
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Figure 8. PRC comparison of detection networks.

The results of SNR-aware Net indicate that using the MCE spectrogram as input is
sufficient to distinguish different classes. However, as mentioned earlier, noise can impair
feature extraction, and training ambiguity caused by feature misalignment can lead other
networks to rely on less discriminative features, resulting in suboptimal performance. By
contrast, SNR-aware Net achieves task-oriented feature fusion using TFFGAM and captures
prior-knowledge-guided feature representations by introducing the SNR branch, thereby
facilitating optimal performance. This demonstrates the effectiveness of the network and
the overall framework as both a vision expert and a signal analysis specialist.

In addition, the visualization comparison of the detection results is presented in
Figure 10. Corresponding to the confusion matrix, SNR-aware Net demonstrates superior
performance by recalling all signals with higher confidence and precise regression. In
contrast, the other networks produce more false positives (FPs) and misses because they do
not capture feature representations with sufficient discrimination. Furthermore, the TP and
FP predictions from these networks often have similar confidences and nearly identical
coordinates, making it challenging to effectively filter out FPs by setting thresholds.
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Figure 9. Confusion matrix comparison of detection networks. (a) Faster R-CNN. (b) SSD. (¢) YOLOV3.
(d) SNR-aware Net.
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Figure 10. Visualization comparison of detection results. Green and purple boxes denote TPs and
FPs, respectively.
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5.2.3. Complexity Comparisons

We conduct a complexity analysis on both the MCE spectrogram and SNR-aware Net,
with the results listed in Table 3. These experiments were implemented on the Intel Core
i5-10400F CPU and an NVIDIA Tesla K80 GPU, where we measure the average time per
image over 1000 images.

First, we perform a quantitative comparison of the computational complexity among
the three spectrograms, focusing on front-end generation speed and back-end inference
speed. As shown in Table 3, the MCE and RGB spectrograms exhibit slightly increased
generation times compared to the grayscale spectrogram. However, all three spectrograms
demonstrate comparable inference speeds. For the MCE spectrogram, the slight increase
in generation complexity is acceptable because the generation speed is still faster than
the inference speed, thus having minimal impact on the overall processing speed during
streaming data. Furthermore, we compare the complexity of the four networks in terms of
network parameter size and inference speed. As shown in Table 3, SNR-aware Net is more
lightweight, with fewer network parameters and faster inference speed.

Table 3. Complexity comparisons.

Detector Parameters  Spectrogram Modality Generation Time (ms)  Inference Time (ms)
Grayscale spectrogram 14.024 142.4
Faster R-CNN 26.36M RGB spectrogram 26.421 142.5
MCE spectrogram 29.288 142.8
Grayscale spectrogram 14.024 1324
SSD 21.15M RGB spectrogram 26.421 132.3
MCE spectrogram 29.288 132.1
Grayscale spectrogram 14.024 113.3
YOLOv3 61.57M RGB spectrogram 26.421 113.6
MCE spectrogram 29.288 113.1
Grayscale spectrogram 14.024 44.6
SNR-aware Net 14.79M RGB spectrogram 26.421 44.5
MCE spectrogram 29.288 44.6

5.2.4. Ablation Experiments

The ablation experiments on the MCE spectrogram include channel ablation and
threshold analysis, with the results listed in Table 4. Regarding the channel ablation re-
sults, we first observe that using each individual channel as input results in suboptimal
performance. Adding either the visual enhancement channel or the information comple-
mentary channel improves the performance. The greatest improvement is achieved when
both channels are added. This demonstrates the complementary nature of the visual and
informational enhancements provided by the MCE spectrogram, collectively leading to
optimal performance. Next, due to memory constraints associated with dataset creation, we
analyze the influence of different thresholds using five specific values. As shown in Table 4,
t75 is the optimal threshold among these. Excessively low or high thresholds adversely
affect performance. The extreme cases of ty and t1gg indicate that the visual enhancement
channel either degrades to the base channel or is zeroed out, both of which hinder effective
visual enhancement and lead to poor attention guidance.
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Table 4. Ablation experiments of MCE spectrogram.
Channel 1 Channel 2 Channel 3 mAP (%) mAR (%)
v X X 71.9 84.1
X v (t75) X 67.8 83.5
X X v 71.7 84.6
v v (tys) X 76.3 87.5
v X v 75.5 86.5
v v (t7s) v 80.9 90.7
v v (to) v 76.1 87.1
v V' (t25) v 774 88.2
v v (ts0) v 79.5 89.4
v v (t7s) v 80.9 90.7
v v (t100) v 75.5 86.5

In addition, Table 5 presents the results of ablation experiments on SNR-aware Net.
The SNR-aware Net without TFFGAM and the SNR branch is utilized as the baseline. It
can be seen that the model with TFFGAM makes progress in precision while maintaining
a higher recall. This improvement can be attributed to the trainable gating mechanism,
which enables the network to capture visual and semantic feature combinations with bet-
ter robustness and discrimination. We also visualize the feature patterns of the models
with and without TFFGAM using Grad-CAM [40], as depicted in Figure 11. Grad-CAM
leverages gradients to highlight the activation and contribution distribution of features.
As can be seen, the model without TFFGAM exhibits scattered activations in regions that
are not highly relevant to the specific categories being analyzed. In contrast, the model
with TFFGAM shows more efficient feature patterns. Specifically, the areas that are most
informative for the model’s predictions are strongly activated. These regions are crucial
for identifying and localizing target signals. Furthermore, the responses from category-
insensitive areas are effectively suppressed. Additionally, the inclusion of the SNR branch
results in a 2.4% increase in mAP and a 1.1% increase in mAR. It optimizes the gradi-
ent backpropagation of the classification task, alleviates the feature misalignment during
training, and further enhances the signal recognition performance. The full implementa-
tion of SNR-aware Net, including both TFFGAM and the SNR branch, achieves the best
performance, with improvements of 6% for mAP and 3.9% for mAR.

Table 5. Ablation experiments of SNR-aware Net.

Method TFFGAM SNR Branch mAP (%) mAR (%)
Baseline X X 74.9 86.8
v X 78.6_;,_3.7 89.2+2.4
SNR-aware Net X v 773424 879,11
v v 80.946.0 90.7+3‘9

We also explore the influence of different methods for categorizing SNR ranges. Ini-
tially, treating each SNR level as a separate class fails to converge effectively. By categorizing
every five SNRs, we achieve an mAP of 79.9% and a mAR of 90.1%. Building on these
results, we further consider the similarity of visual characteristics of signals at different
SNRs and the performance versus SNR curves to determine the final categorization method,
leading to further improvements.



Electronics 2025, 14, 2260

21 0f23

2FSK
s A

<L

(@)

L.

Lo

}—

3

=

2

s

<

(O]

L

[V

'_

£

2

AM-DSB

without TFFGAM

with TFFGAM

Figure 11. Visualization of feature maps produced by models with and without TFFGAM using
Grad-CAM.

6. Conclusions

In this paper, we propose an overall improved wideband signal detection framework
that addresses the limitations of existing methods in both the front-end spectrogram and
the back-end detection network. Firstly, we introduce a concise alternative, the MCE
spectrogram, which outperforms the spectrogram baselines used in previous studies.
The MCE spectrogram effectively enhances the performance of various networks while
maintaining reasonable computational complexity. Secondly, we propose a novel anchor-
free SNR-aware Net. This network not only achieves more efficient feature fusion through a
trainable TFFGAM but also captures more prior-knowledge-guided feature representations
by introducing an SNR branch. SNR-aware Net achieves state-of-the-art performance with
fewer parameters and faster inference speed compared to other networks.

The distinctive contribution of this paper lies more in presenting a novel strategy to
pursue optimal performance of the framework. Firstly, previous works have been overly
network-centric, overlooking the importance of the front-end spectrogram. The superior
performance of the MCE spectrogram demonstrates the effectiveness of enhancing the
input modality. Secondly, previous works have been overly “visual”, ignoring task-specific
distinctions and the supportive role of prior domain knowledge. The superior performance
of SNR-aware Net suggests the potential for task-oriented modifications to the network.
We also explore a promising method of incorporating prior knowledge into the network by
introducing auxiliary tasks, which can be extended to other carefully designed branches to
improve performance across diverse application scenarios. In future work, we will focus
on expanding this strategy by exploring other types of TFRs at the front-end and utilizing
channel-related prior knowledge to facilitate a more essential understanding of the signals
by the back-end network.
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