Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,326)

Search Parameters:
Keywords = commercial tools

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3149 KiB  
Article
Evaluation of Aggregate Oral Fluid Sampling for Early Detection of African Swine Fever Virus Infection
by Bonto Faburay, Kathleen O’Hara, Marta Remmenga, Theophilus Odoom, Sherry Johnson, William Tasiame, Matilda Ayim-Akonor, Benita Anderson, Kingsley Kwabena Amoako, Diane Holder, Wu Ping, Michelle Zajac, Vivian O’Donnell, Lizhe Xu, Robin Holland, Corrie Brown, Randall Levings and Suelee Robbe-Austerman
Viruses 2025, 17(8), 1089; https://doi.org/10.3390/v17081089 - 6 Aug 2025
Abstract
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large [...] Read more.
African swine fever (ASF) needs to be controlled, and prevention of the spread of African swine fever virus (ASFV) is dependent on enhanced surveillance and early disease detection. Commercial swine operations, especially in North America, Europe, and Asia, are characterized by comparatively large numbers of pigs, and sampling individual pigs, which represents the main strategy for current ASF surveillance, can be both costly and labor intensive. A study performed in Ghana was designed to estimate the diagnostic sensitivity of pen-based aggregate oral fluid testing for ASFV in infected pigs in a pen of 30 animals and to evaluate its utility as a tool to support surveillance of ASF in the US. This study was performed in three phases: (i) virus (Ghana ASFV24) amplification in a target host species to generate the challenge inoculum; (ii) titration of the inoculum (10% spleen homogenate) in target host species to determine the minimum dose inducing acute ASF in pigs with survival up to 5–6 days post-inoculation (dpi); and (iii) the main study, involving 186 pigs, consisting of 6 replicates of 30 pigs per pen and one seeder pig inoculated with wildtype ASFV (highly virulent genotype II) per pen. Daily sampling of aggregate oral fluids, uncoagulated blood, oropharyngeal swabs, fecal and water nipple swabs, and recording of rectal temperatures and clinical observations was carried out. The seeder pigs were each inoculated intramuscularly with 0.5 mL of the 10% spleen homogenate, which induced the desired clinical course of ASF in the pigs, with survival of up to 6 dpi. ASFV DNA was detected in the seeder pigs as early as 1 dpi and 2 dpi in the blood and oropharyngeal swabs, respectively. Transmission of ASFV from the seeder pigs to the contact pig population was detected via positive amplification of ASFV DNA in aggregate oral fluid samples at 3 days post-contact (dpc) in 4 out of 6 pens, and in all 6 pens, at 4 dpc. Testing of oropharyngeal swabs and blood samples from individual pigs revealed a variable number of ASFV-positive pigs between 3 and 5 dpc, with detection of 100% positivity between 6 and 18 dpc, the study endpoint. These findings demonstrate the potential utility of aggregate oral fluid sampling for sensitive and early detection of ASFV incursion into naïve swine herds. It also demonstrates that testing of environmental samples from the premises could further enhance overall ASF early detection and surveillance strategies. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

21 pages, 19752 KiB  
Article
Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards
by Laurance Donnelly, Duncan Pirrie, Matthew Power and Andrew Menzies
Recycling 2025, 10(4), 157; https://doi.org/10.3390/recycling10040157 - 6 Aug 2025
Abstract
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does [...] Read more.
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does not provide information on the textural variability, phase complexity, grain size, particle morphology, phase liberation and associations. To address this, we have integrated analysis using binocular microscopy, manual scanning electron microscopy, phase, textural and compositional analyses by automated (SEM-EDS), phase analysis based on (Automated Material Identification and Classification System (AMICS) software, and elemental analysis using micro-XRF. All methods used have strengths and limitations, but an integration of these analytical tools allows the detailed characterization of the texture and composition of the E-waste feeds, ahead of waste reprocessing. These data can then be used to aid the design of optimized processing circuits for the recovery of the key payable components, and assist in the commercial trading of e-scrap. Full article
Show Figures

Figure 1

19 pages, 253 KiB  
Article
The Application of Artificial Intelligence in Acute Prescribing in Homeopathy: A Comparative Retrospective Study
by Rachael Doherty, Parker Pracjek, Christine D. Luketic, Denise Straiges and Alastair C. Gray
Healthcare 2025, 13(15), 1923; https://doi.org/10.3390/healthcare13151923 - 6 Aug 2025
Abstract
Background/Objective: The use of artificial intelligence to assist in medical applications is an emerging area of investigation and discussion. The researchers studied whether there was a difference between homeopathy guidance provided by artificial intelligence (AI) (automated) and live professional practitioners (live) for acute [...] Read more.
Background/Objective: The use of artificial intelligence to assist in medical applications is an emerging area of investigation and discussion. The researchers studied whether there was a difference between homeopathy guidance provided by artificial intelligence (AI) (automated) and live professional practitioners (live) for acute illnesses. Additionally, the study explored the practical challenges associated with validating AI tools used for homeopathy and sought to generate insights on the potential value and limitations of these tools in the management of acute health complaints. Method: Randomly selected cases at a homeopathy teaching clinic (n = 100) were entered into a commercially available homeopathic remedy finder to investigate the consistency between automated and live recommendations. Client symptoms, medical disclaimers, remedies, and posology were compared. The findings of this study show that the purpose-built homeopathic remedy finder is not a one-to-one replacement for a live practitioner. Result: In the 100 cases compared, the automated online remedy finder provided between 1 and 20 prioritized remedy recommendations for each complaint, leaving the user to make the final remedy decision based on how well their characteristic symptoms were covered by each potential remedy. The live practitioner-recommended remedy was included somewhere among the auto-mated results in 59% of the cases, appeared in the top three results in 37% of the cases, and was a top remedy match in 17% of the cases. There was no guidance for managing remedy responses found in live clinical settings. Conclusion: This study also highlights the challenge and importance of validating AI remedy recommendations against real cases. The automated remedy finder used covered 74 acute complaints. The live cases from the teaching clinic included 22 of the 74 complaints. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
22 pages, 1820 KiB  
Article
Can a Commercially Available Smartwatch Device Accurately Measure Nighttime Sleep Outcomes in Individuals with Knee Osteoarthritis and Comorbid Insomnia? A Comparison with Home-Based Polysomnography
by Céline Labie, Nils Runge, Zosia Goossens, Olivier Mairesse, Jo Nijs, Anneleen Malfliet, Dieter Van Assche, Kurt de Vlam, Luca Menghini, Sabine Verschueren and Liesbet De Baets
Sensors 2025, 25(15), 4813; https://doi.org/10.3390/s25154813 - 5 Aug 2025
Abstract
Sleep is a vital physiological process for recovery and health. In people with knee osteoarthritis (OA), disrupted sleep is common and linked to worse clinical outcomes. Commercial sleep trackers provide an accessible option to monitor sleep in this population, but their accuracy for [...] Read more.
Sleep is a vital physiological process for recovery and health. In people with knee osteoarthritis (OA), disrupted sleep is common and linked to worse clinical outcomes. Commercial sleep trackers provide an accessible option to monitor sleep in this population, but their accuracy for detecting sleep, wake, and sleep stages remains uncertain. This study compared nighttime sleep data from polysomnography (PSG) and Fitbit Sense in individuals with knee OA and insomnia. Data were collected from 53 participants (60.4% women, mean age 51 ± 8.2 years) over 62 nights using simultaneous PSG and Fitbit recording. Fitbit Sense showed high accuracy (85.76%) and sensitivity (95.95%) for detecting sleep but lower specificity (50.96%), indicating difficulty separating quiet wakefulness from sleep. Agreement with PSG was higher on nights with longer total sleep time, higher sleep efficiency, shorter sleep onset, and fewer awakenings, suggesting better performance when sleep is less fragmented. The device showed limited precision in classifying sleep stages, often misclassifying deep and REM sleep as light sleep. Despite these issues, Fitbit Sense may serve as a useful complementary tool for monitoring sleep duration, timing, and regularity in this population. However, sleep stage and fragmentation data should be interpreted cautiously in both clinical and research settings. Full article
Show Figures

Figure 1

14 pages, 10994 KiB  
Article
Novel Cemented Carbide Inserts for Metal Grooving Applications
by Janusz Konstanty, Albir Layyous and Łukasz Furtak
Materials 2025, 18(15), 3674; https://doi.org/10.3390/ma18153674 - 5 Aug 2025
Abstract
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, [...] Read more.
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, dedicated to groove steel, stainless steel, cast iron, and aluminium alloys, have been newly designed, along with their manufacturing conditions. Physical, mechanical and chemical characteristics—such as sintered density, modulus of elasticity, hardness, fracture toughness, WC grain size, and the chemical composition of the substrate material, as well as the chemical composition, microhardness, structure, and thickness of the coatings—have been studied. A series of grooving tests have also been conducted to assess whether modifications to the thus far marketed tool materials, tool geometries, and coatings can improve cutting performance. In order to compare the laboratory and application properties of the investigated materials with currently produced by reputable companies, commercial inserts have also been tested. The experimental results obtained indicate that the newly developed grooving inserts exhibit excellent microstructural characteristics, high hardness, fracture toughness, and wear resistance and that they show slightly longer tool life compared to the commercial ones. Full article
Show Figures

Figure 1

17 pages, 913 KiB  
Article
The Effects of CBDCs on Mobile Money and Outstanding Loans: Evidence from the eNaira and SandDollar Experiences
by Francisco Elieser Giraldo-Gordillo and Ricardo Bustillo-Mesanza
FinTech 2025, 4(3), 39; https://doi.org/10.3390/fintech4030039 - 5 Aug 2025
Abstract
This paper measures the post-treatment effects of Central Bank Digital Currencies (CBDCs) on mobile money and outstanding loans from commercial banks as a percentage of the GDP in Nigeria and the Bahamas, respectively, from the perspective of financial inclusion. The literature on the [...] Read more.
This paper measures the post-treatment effects of Central Bank Digital Currencies (CBDCs) on mobile money and outstanding loans from commercial banks as a percentage of the GDP in Nigeria and the Bahamas, respectively, from the perspective of financial inclusion. The literature on the topic has primarily focused on the technological specifications of CBDCs and their potential future implementation. This article addresses a gap in the empirical literature by examining the effects of CBDCs. To this end, a Synthetic Control Method (SCM) is applied to the Bahamas (SandDollar) and Nigeria (eNaira) to construct a counterfactual scenario and assess the impact of CBDCs on mobile money and commercial bank loans. Nigeria’s mobile money transactions as a percentage of the GDP increased significantly compared to the synthetic control group, suggesting a notable positive effect of the eNaira. Conversely, in the Bahamas, actual performance fell below the synthetic control, implying that SandDollar may have contributed to a decline in outstanding loans. These results suggest that CBDCs could pose a “deposit substitution risk” for commercial banks. However, they may also enhance the performance of other Fintech tools, as observed in the case of mobile money. As CBDC implementations worldwide remain in their early stages, their long-term effects require further analysis. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

27 pages, 1757 KiB  
Article
Salt Stress Mitigation and Field-Relevant Biostimulant Activity of Prosystemin Protein Fragments: Novel Tools for Cutting-Edge Solutions in Agriculture
by Martina Chiara Criscuolo, Raffaele Magliulo, Valeria Castaldi, Valerio Cirillo, Claudio Cristiani, Andrea Negroni, Anna Maria Aprile, Donata Molisso, Martina Buonanno, Davide Esposito, Emma Langella, Simona Maria Monti and Rosa Rao
Plants 2025, 14(15), 2411; https://doi.org/10.3390/plants14152411 - 4 Aug 2025
Viewed by 30
Abstract
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt [...] Read more.
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90. In addition, the peptides exhibited biostimulant activity, significantly improving root area (up to 10%) and shoot growth (up to 9%). We validated such activities through two-year field trials carried out on industrial tomato crops. Peptide treatments confirmed their biostimulant effects, leading to a nearly 50% increase in marketable production compared to a commonly used commercial product and consistently enhancing fruit °Brix values. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

23 pages, 2688 KiB  
Article
Effect of Biostimulant Applications on Eco-Physiological Traits, Yield, and Fruit Quality of Two Raspberry Cultivars
by Francesco Giovanelli, Cristian Silvestri and Valerio Cristofori
Horticulturae 2025, 11(8), 906; https://doi.org/10.3390/horticulturae11080906 (registering DOI) - 4 Aug 2025
Viewed by 51
Abstract
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 [...] Read more.
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 (leonardite-humic acids), and BIO3 (plant-based extracts)—on leaf ecophysiology, yield, and fruit quality in two raspberry cultivars, ‘Autumn Bliss’ (AB) and ‘Zeva’ (Z), grown in an open-field context, to assess their effectiveness in raspberry cultivation. Experimental activities involved two Research Years (RYs), namely, year 2023 (RY 1) and 2024 (RY 2). Leaf parameters such as chlorophyll, flavonols, anthocyanins, and the Nitrogen Balance Index (NBI) were predominantly influenced by the interaction between Treatment, Year and Cultivar factors, indicating context-dependent responses rather than direct biostimulant effects. BIO2 showed a tendency to increase yield (g plant−1) and berry number plant−1, particularly in RY 2 (417.50 g plant−1, +33.93% vs. control). Fruit quality responses were cultivar and time-specific: BIO3 improved soluble solid content in AB (12.8 °Brix, RY 2, Intermediate Harvest) and Z (11.43 °Brix, +13.91% vs. BIO2). BIO2 reduced titratable acidity in AB (3.12 g L−1) and increased pH in Z (3.02, RY 2) but also decreased °Brix in Z. These findings highlight the potential of biostimulants to modulate raspberry physiology and productivity but underscore the critical role of cultivar, environmental conditions, and specific biostimulant composition in determining the outcomes, which were found to critically depend on tailored application strategies. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 111
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 106
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 253
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 2435 KiB  
Article
Preliminary Evaluation of Spherical Over-Refraction Measurement Using a Smartphone
by Rosa Maria Salmeron-Campillo, Gines Martinez-Ros, Jose Angel Diaz-Guirado, Tania Orenes-Nicolas, Mateusz Jaskulski and Norberto Lopez-Gil
Photonics 2025, 12(8), 772; https://doi.org/10.3390/photonics12080772 - 31 Jul 2025
Viewed by 222
Abstract
Background: Smartphones offer a promising tool for monitoring refractive error, especially in underserved areas where there is a shortage of eye-care professionals. We propose a novel method for measuring spherical over-refraction using smartphones. Methods: Specific levels of myopia using positive spherical trial lenses, [...] Read more.
Background: Smartphones offer a promising tool for monitoring refractive error, especially in underserved areas where there is a shortage of eye-care professionals. We propose a novel method for measuring spherical over-refraction using smartphones. Methods: Specific levels of myopia using positive spherical trial lenses, ranging from 0.00 D to 1.50 D in 0.25 D increments, were induced in 30 young participants (22 ± 5 years). A comparison was conducted between the induced over-refraction and the measurements obtained using a non-commercial mobile application based on the face–device distance measurement using the front camera while the subject was performing a resolution task. Results: Calibrated mobile app over-refraction results showed that 89.5% of the estimates had an error ≤ 0.25 D, and no errors exceeding 0.50 D. Bland–Altman analysis revealed no significant bias between app and clinical over-refraction, with a mean difference of 0.00 D ± 0.44 D (p = 0.981), indicating high accuracy and precision of the method. Conclusions: The methodology used shows high accuracy and precision in the measurement of the spherical over-refraction with only the use of a smartphone, allowing self-monitorization of potential myopia progression. Full article
Show Figures

Figure 1

16 pages, 3482 KiB  
Article
Reliability of Automated Amyloid PET Quantification: Real-World Validation of Commercial Tools Against Centiloid Project Method
by Yeon-koo Kang, Jae Won Min, Soo Jin Kwon and Seunggyun Ha
Tomography 2025, 11(8), 86; https://doi.org/10.3390/tomography11080086 - 30 Jul 2025
Viewed by 280
Abstract
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study [...] Read more.
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study included 332 amyloid PET scans (165 [18F]Florbetaben; 167 [18F]Flutemetamol) performed for suspected mild cognitive impairments or dementia, paired with T1-weighted MRI within one year. Centiloid values were calculated using three automated software platforms, BTXBrain, MIMneuro, and SCALE PET, and compared with the original Centiloid method. The agreement was assessed using Pearson’s correlation coefficient, the intraclass correlation coefficient (ICC), a Passing–Bablok regression, and Bland–Altman plots. The concordance with the visual interpretation was evaluated using receiver operating characteristic (ROC) curves. Results: BTXBrain (R = 0.993; ICC = 0.986) and SCALE PET (R = 0.992; ICC = 0.991) demonstrated an excellent correlation with the reference, while MIMneuro showed a slightly lower agreement (R = 0.974; ICC = 0.966). BTXBrain exhibited a proportional underestimation (slope = 0.872 [0.860–0.885]), MIMneuro showed a significant overestimation (slope = 1.053 [1.026–1.081]), and SCALE PET demonstrated a minimal bias (slope = 1.014 [0.999–1.029]). The bias pattern was particularly noted for FMM. All platforms maintained their trends for correlations and biases when focusing on subthreshold-to-low-positive ranges (0–50 Centiloid units). However, all platforms showed an excellent agreement with the visual interpretation (areas under ROC curves > 0.996 for all). Conclusions: Three automated platforms demonstrated an acceptable reliability for Centiloid quantification, although software-specific biases were observed. These differences did not impair their feasibility in aiding the image interpretation, as supported by the concordance with visual readings. Nevertheless, users should recognize the platform-specific characteristics when applying diagnostic thresholds or interpreting longitudinal changes. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

28 pages, 1334 KiB  
Review
Evaluating Data Quality: Comparative Insights on Standards, Methodologies, and Modern Software Tools
by Theodoros Alexakis, Evgenia Adamopoulou, Nikolaos Peppes, Emmanouil Daskalakis and Georgios Ntouskas
Electronics 2025, 14(15), 3038; https://doi.org/10.3390/electronics14153038 - 30 Jul 2025
Viewed by 347
Abstract
In an era of exponential data growth, ensuring high data quality has become essential for effective, evidence-based decision making. This study presents a structured and comparative review of the field by integrating data classifications, quality dimensions, assessment methodologies, and modern software tools. Unlike [...] Read more.
In an era of exponential data growth, ensuring high data quality has become essential for effective, evidence-based decision making. This study presents a structured and comparative review of the field by integrating data classifications, quality dimensions, assessment methodologies, and modern software tools. Unlike earlier reviews that focus narrowly on individual aspects, this work synthesizes foundational concepts with formal frameworks, including the Findable, Accessible, Interoperable, and Reusable (FAIR) principles and the ISO/IEC 25000 series on software and data quality. It further examines well-established assessment models, such as Total Data Quality Management (TDQM), Data Warehouse Quality (DWQ), and High-Quality Data Management (HDQM), and critically evaluates commercial platforms in terms of functionality, AI integration, and adaptability. A key contribution lies in the development of conceptual mappings that link data quality dimensions with FAIR indicators and maturity levels, offering a practical reference model. The findings also identify gaps in current tools and approaches, particularly around cost-awareness, explainability, and process adaptability. By bridging theory and practice, the study contributes to the academic literature while offering actionable insights for building scalable, standards-aligned, and context-sensitive data quality management strategies. Full article
Show Figures

Figure 1

12 pages, 1176 KiB  
Article
Effect of Different Extenders on the Oxidative Status and Fertility of Sarda Ram Liquid Semen Stored at 15 °C
by Pasciu Valeria, Charbel Nassif, Maria Dattena, Sara Succu, Francesca Daniela Sotgiu, Antonello Cannas, Ignazio Cossu, Elena Baralla, Fabrizio Chessa, Fiammetta Berlinguer and Laura Mara
Antioxidants 2025, 14(8), 932; https://doi.org/10.3390/antiox14080932 - 30 Jul 2025
Viewed by 249
Abstract
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to [...] Read more.
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to a decline in sperm quality, particularly with regard to sperm nuclear DNA damage and mitochondrial membrane potential (MMP). This study evaluated the effect of storing Sarda ram semen at 15 °C for 7 h on its redox status, motility, morphology, acrosome integrity, ATP content, mitochondrial potential membrane, and in vivo fertility after artificial insemination. Two different extenders were compared: a lab-made skimmed milk (SM)-based extender and a commercial extender (OviXcell®, IMV-Technologies, France). Lower ROS levels in the SM (p < 0.001) indicated that its oxidative status was better maintained compared to the commercial extender (CE). Antioxidant defenses (total antioxidant capacity, TEAC; superoxide dismutase, SOD; total thiols) were higher in the SM (p < 0.01) than in the CE. SM also had higher MMP (p < 0.05), acrosome integrity (p < 0.05), ATP content (p < 0.01), and in vivo fertilizing capacity (p < 0.05) compared to the CE, which indicated higher semen quality. In conclusion, the SM extender, while maintaining a better oxidative/antioxidant balance, ensured higher semen quality after 7 h of storage at 15 °C in vitro compared to the CE. Full article
Show Figures

Figure 1

Back to TopTop