The Role of AI in Predictive and Prescriptive Healthcare

A special issue of Healthcare (ISSN 2227-9032). This special issue belongs to the section "Artificial Intelligence in Medicine".

Deadline for manuscript submissions: 30 May 2026 | Viewed by 2326

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
Interests: artificial intelligence; data science; medical systems; medical informatics; robotics systems

Special Issue Information

Dear Colleagues,

We are pleased to invite you to submit your research to a Special Issue of MDPI Healthcare entitled “The Role of AI in Predictive and Prescriptive Healthcare”. Artificial intelligence (AI) is rapidly transforming the healthcare landscape, with applications impacting disease diagnosis, treatment planning, and personalized medicine. This burgeoning field holds immense promise for revolutionizing healthcare delivery and improving patient outcomes.

This Special Issue aims to showcase the latest advancements and explore the diverse applications of AI and data science in healthcare, medicine, and population health. We welcome submissions that align with the journal's focus on high-quality, impactful research relevant to healthcare professionals and researchers.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Machine learning in medical diagnosis and prediction;
  • AI-powered medical image analysis (e.g., radiology, pathology);
  • Natural language processing for clinical decision support;
  • AI for personalized medicine and patient stratification;
  • AI-driven wearables and remote patient monitoring;
  • Challenges of AI in healthcare.

We encourage submissions of original research articles, comprehensive reviews, and short communications addressing these themes.

I look forward to receiving your contributions.

Dr. Matthew Chin Heng Chua
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Healthcare is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • machine learning
  • deep learning
  • healthcare
  • medicine
  • diagnosis
  • treatment
  • personalized medicine
  • medical imaging
  • clinical decision support

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 253 KiB  
Article
The Application of Artificial Intelligence in Acute Prescribing in Homeopathy: A Comparative Retrospective Study
by Rachael Doherty, Parker Pracjek, Christine D. Luketic, Denise Straiges and Alastair C. Gray
Healthcare 2025, 13(15), 1923; https://doi.org/10.3390/healthcare13151923 - 6 Aug 2025
Abstract
Background/Objective: The use of artificial intelligence to assist in medical applications is an emerging area of investigation and discussion. The researchers studied whether there was a difference between homeopathy guidance provided by artificial intelligence (AI) (automated) and live professional practitioners (live) for acute [...] Read more.
Background/Objective: The use of artificial intelligence to assist in medical applications is an emerging area of investigation and discussion. The researchers studied whether there was a difference between homeopathy guidance provided by artificial intelligence (AI) (automated) and live professional practitioners (live) for acute illnesses. Additionally, the study explored the practical challenges associated with validating AI tools used for homeopathy and sought to generate insights on the potential value and limitations of these tools in the management of acute health complaints. Method: Randomly selected cases at a homeopathy teaching clinic (n = 100) were entered into a commercially available homeopathic remedy finder to investigate the consistency between automated and live recommendations. Client symptoms, medical disclaimers, remedies, and posology were compared. The findings of this study show that the purpose-built homeopathic remedy finder is not a one-to-one replacement for a live practitioner. Result: In the 100 cases compared, the automated online remedy finder provided between 1 and 20 prioritized remedy recommendations for each complaint, leaving the user to make the final remedy decision based on how well their characteristic symptoms were covered by each potential remedy. The live practitioner-recommended remedy was included somewhere among the auto-mated results in 59% of the cases, appeared in the top three results in 37% of the cases, and was a top remedy match in 17% of the cases. There was no guidance for managing remedy responses found in live clinical settings. Conclusion: This study also highlights the challenge and importance of validating AI remedy recommendations against real cases. The automated remedy finder used covered 74 acute complaints. The live cases from the teaching clinic included 22 of the 74 complaints. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
17 pages, 3873 KiB  
Article
Prediction of Post-Bath Body Temperature Using Fuzzy Inference Systems with Hydrotherapy Data
by Feng Han, Minghui Tang, Ziheng Zhang, Kenji Hirata, Yoji Okugawa, Yunosuke Matsuda, Jun Nakaya, Katsuhiko Ogasawara and Kohsuke Kudo
Healthcare 2025, 13(9), 972; https://doi.org/10.3390/healthcare13090972 - 23 Apr 2025
Viewed by 549
Abstract
Background/Objectives: Widely known for its therapeutic benefits, hydrotherapy utilizes water’s physical properties, such as temperature, hydrostatic pressure, and viscosity, to influence physiological responses. Among these, body temperature modulation plays a crucial role in enhancing circulatory function, muscle relaxation, and metabolic processes. While hydrotherapy [...] Read more.
Background/Objectives: Widely known for its therapeutic benefits, hydrotherapy utilizes water’s physical properties, such as temperature, hydrostatic pressure, and viscosity, to influence physiological responses. Among these, body temperature modulation plays a crucial role in enhancing circulatory function, muscle relaxation, and metabolic processes. While hydrotherapy can improve systemic health, particularly cardiac function, improper temperature control poses risks, especially for vulnerable populations such as the elderly or individuals with thermoregulatory impairments. Therefore, accurately predicting post-bath body temperature is essential for ensuring safety and optimizing therapeutic outcomes. Methods: This study explored the use of fuzzy inference systems to predict post-bath body temperature, leveraging an adaptive neuro-fuzzy inference system, evolutionary fuzzy inference system (EVOFIS), and enhanced Takagi-Sugeno fuzzy system. These models were compared with random forest and support vector machine models using hydrotherapy-related data. Results: The results show that EVOFIS outperformed other models, particularly in predicting deep body temperature, which is clinically significant as it is closely linked to core physiological regulation. Conclusions: The ability to accurately forecast deep-temperature dynamics enables proactive management of hyperthermia risk, supporting safer hydrotherapy practices for at-risk groups. These findings highlight the potential of FIS-based models for non-invasive temperature prediction, contributing to enhanced safety and personalization in hydrotherapy applications. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 1126 KiB  
Review
Exploring the Role of Artificial Intelligence in Smart Healthcare: A Capability and Function-Oriented Review
by Syed Raza Abbas, Huiseung Seol, Zeeshan Abbas and Seung Won Lee
Healthcare 2025, 13(14), 1642; https://doi.org/10.3390/healthcare13141642 - 8 Jul 2025
Viewed by 1258
Abstract
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures [...] Read more.
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures (e.g., Limited Memory and Theory of Mind). Based on capabilities, most AI systems today are categorized as Narrow AI, performing specific tasks such as medical image analysis and risk prediction with high accuracy. More advanced forms like General Artificial Intelligence (AGI) and Superintelligent AI remain theoretical but hold transformative potential. From a functional standpoint, Limited Memory AI dominates clinical applications by learning from historical patient data to inform decision-making. Reactive systems are used in rule-based alerts, while Theory of Mind (ToM) and Self-Aware AI remain conceptual stages for future development. This dual perspective provides a comprehensive framework to assess the maturity, impact, and future direction of AI in healthcare. It also highlights the need for ethical design, transparency, and regulation as AI systems grow more complex and autonomous, by incorporating cross-domain AI insights. Moreover, we evaluate the viability of developing AGI in regionally specific legal and regulatory frameworks, using South Korea as a case study to emphasize the limitations imposed by infrastructural preparedness and medical data governance regulations. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
Show Figures

Figure 1

Back to TopTop