Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,138)

Search Parameters:
Keywords = combination ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 473 KiB  
Article
Comparative Efficacy of pHA130 Haemoadsorption Combined with Haemodialysis Versus Online Haemodiafiltration in Removing Protein-Bound and Middle-Molecular-Weight Uraemic Toxins: A Randomized Controlled Trial
by Shaobin Yu, Huaihong Yuan, Xiaohong Xiong, Yalin Zhu and Ping Fu
Toxins 2025, 17(8), 392; https://doi.org/10.3390/toxins17080392 - 5 Aug 2025
Abstract
Protein-bound uraemic toxins (PBUTs), such as indoxyl sulphate (IS) and p-cresyl sulphate (PCS), are poorly cleared by conventional haemodialysis (HD) or haemodiafiltration (HDF). Haemoadsorption combined with HD (HAHD) using the novel pHA130 cartridge may increase PBUT removal, and this trial aimed to compare [...] Read more.
Protein-bound uraemic toxins (PBUTs), such as indoxyl sulphate (IS) and p-cresyl sulphate (PCS), are poorly cleared by conventional haemodialysis (HD) or haemodiafiltration (HDF). Haemoadsorption combined with HD (HAHD) using the novel pHA130 cartridge may increase PBUT removal, and this trial aimed to compare its efficacy and safety with HDF in patients with end-stage renal disease (ESRD). In this single-centre, open-label trial, 30 maintenance HD patients were randomized (1:1:1) to HDF once every two weeks (HDF-q2w), HAHD once every two weeks (HAHD-q2w), or HAHD once weekly (HAHD-q1w) for 8 weeks, with the primary endpoint being the single-session reduction ratio (RR) of IS. The combined HAHD group (n = 20) demonstrated a significantly greater IS reduction than the HDF-q2w group (n = 10) (46.9% vs. 31.8%; p = 0.044) and superior PCS clearance (44.6% vs. 31.4%; p = 0.003). Both HAHD regimens significantly reduced predialysis IS levels at Week 8. Compared with HDF, weekly HAHD provided greater relief from pruritus and improved sleep quality, with comparable adverse events among groups. In conclusion, HAHD with the pHA130 cartridge is more effective than HDF for enhancing single-session PBUT removal and alleviating uraemic symptoms in patients with ESRD, with weekly application showing optimal symptomatic benefits. Full article
(This article belongs to the Section Uremic Toxins)
Show Figures

Figure 1

16 pages, 1899 KiB  
Systematic Review
Enhancing Cardiovascular Autonomic Regulation in Parkinson’s Disease Through Non-Invasive Interventions
by Aastha Suthar, Ajmal Zemmar, Andrei Krassioukov and Alexander Ovechkin
Life 2025, 15(8), 1244; https://doi.org/10.3390/life15081244 - 5 Aug 2025
Abstract
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need [...] Read more.
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need for safer, more accessible alternatives. In this systematic review, we evaluated non-invasive interventions—spanning somatosensory stimulation, exercise modalities, thermal therapies, and positional strategies—aimed at improving cardiovascular autonomic function in PD. Methods: We searched PubMed, Embase, MEDLINE (Ovid), Google Scholar, ScienceDirect, and Web of Science for studies published between January 2014 and December 2024. Eight original studies (n = 8) including 205 participants met the inclusion criteria for analyzing cardiac sympathovagal balance. Results: Five studies demonstrated significant post-intervention increases in BRS. Most reported favorable shifts in heart rate variability (HRV) and favorable changes in the low-frequency/high-frequency (LF/HF) ratio. Across modalities, systolic blood pressure (SBP) decreased by an average of 5%, and some interventions produced benefits that persisted up to 24 h. Conclusion: Although sample sizes were small and protocols heterogeneous, the collective findings support the potential of non-invasive neuromodulation to enhance BRS and overall cardiovascular regulation in PD. Future research should focus on standardized, higher-intensity or combined protocols with longer follow-up periods to establish durable, clinically meaningful improvements in autonomic function and quality of life for people living with PD. Full article
Show Figures

Figure 1

15 pages, 2970 KiB  
Article
A Study on the Heat Dissipation Effects During the Meshing Process of Involute Gears with Variable Tooth Thickness
by Huicheng Zhang, Yongping Liu and Junhai Guo
Machines 2025, 13(8), 686; https://doi.org/10.3390/machines13080686 - 5 Aug 2025
Abstract
The involute gear with variable tooth thickness lacks established methods for calculating meshing heat and studying oil-jet lubrication and cooling effects. This study aims to theoretically estimate the meshing heat generated during the engagement process of involute gears with variable tooth thickness. To [...] Read more.
The involute gear with variable tooth thickness lacks established methods for calculating meshing heat and studying oil-jet lubrication and cooling effects. This study aims to theoretically estimate the meshing heat generated during the engagement process of involute gears with variable tooth thickness. To achieve this, a heat calculation model is derived based on the corresponding tooth surface equations. The impact of oil-jet lubrication parameters—jet velocity, pitch cone angle, face width ratio, and axial displacement—on the gear surface temperature and internal gearbox environment is systematically studied. Numerical simulations of the temperature field are validated through experimental measurements. The results indicate that an oil-jet velocity of 15 m/s combined with a pitch cone angle of 4° significantly reduces both gear surface and internal flow field temperatures. Additionally, smaller face width ratios and axial displacements effectively lower the internal temperature of the gearbox. These findings offer a theoretical basis for calculating meshing heat and designing oil-jet lubrication systems for variable-tooth-thickness involute gears. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

25 pages, 723 KiB  
Review
Quantitative Variables Derived from the Electroencephalographic Signal to Assess Depth of Anaesthesia in Animals: A Narrative Review
by Susanne Figueroa, Olivier L. Levionnois and Alessandro Mirra
Animals 2025, 15(15), 2285; https://doi.org/10.3390/ani15152285 - 5 Aug 2025
Abstract
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to [...] Read more.
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to monitor sedation or anaesthesia in live animals, excluding laboratory rodents, over the past 35 years. Studies were identified through comprehensive searches in major biomedical databases (PubMed, Embase, CAB Abstract). To be included, studies had to report EEG use in relation to anaesthesia or sedation in living animals. A total of 169 studies were selected after screening and data extraction. Information was charted by animal species and reported EEG-derived variables. The most frequently reported variables were spectral edge frequencies, spectral power metrics, suppression ratio, and proprietary indices, such as the Bispectral Index. Methodological variability was high, and no consensus emerged on optimal EEG measures across species. While EEG-derived quantitative variables provide valuable insights, their interpretation remains highly context-dependent. Further research is necessary to refine these methods, explore variable combinations, and improve their clinical relevance in veterinary medicine. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

25 pages, 13119 KiB  
Article
Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland
by Arleen Rodríguez-Declet, Maria Teresa Rodinò, Salvatore Praticò, Antonio Gelsomino, Adamo Domenico Rombolà, Giuseppe Modica and Gaetano Messina
Soil Syst. 2025, 9(3), 86; https://doi.org/10.3390/soilsystems9030086 (registering DOI) - 4 Aug 2025
Abstract
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil [...] Read more.
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil mapping revealed strong baseline heterogeneity in texture, CEC, and Si pools. Compost application markedly increased total organic C and N levels, aggregate stability, and pH with noticeable changes after the first amendment, whereas a limited C storage potential was found following further additions. NDVI values of tree canopies monitored over a 3-year period showed significant time-dependent changes not correlated with the soil fertility variables, thus suggesting that multiple interrelated factors affect plant responses. The non-crystalline amorphous Si/total amorphous Si (iSi:Siamor) ratio is here proposed as a novel indicator of pedogenic alteration in disturbed agroecosystems. These findings highlight the importance of tailoring organic farming strategies to site-specific conditions and reinforce the value to combine C and Si pool analysis for long-term soil fertility assessment. Full article
Show Figures

Figure 1

50 pages, 9033 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 - 4 Aug 2025
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0°C), minimal surface temperature deviation (ΔTsurface of 2.8°C), and optimal thermal resistance (Rth of 0.27°C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

28 pages, 5073 KiB  
Article
Exploring the Potential of Nitrogen Fertilizer Mixed Application to Improve Crop Yield and Nitrogen Partial Productivity: A Meta-Analysis
by Yaya Duan, Yuanbo Jiang, Yi Ling, Wenjing Chang, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Bin Liu
Plants 2025, 14(15), 2417; https://doi.org/10.3390/plants14152417 - 4 Aug 2025
Abstract
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase [...] Read more.
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase yield and income and improve nitrogen fertilizer efficiency. This study used urea alone (Urea) and slow-release nitrogen fertilizer alone (C/SRF) as controls and employed meta-analysis and a random forest model to assess MNF effects on crop yield and nitrogen partial factor productivity (PFPN), and to identify key influencing factors. Results showed that compared with urea, MNF increased crop yield by 7.42% and PFPN by 8.20%, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 20 °C, and elevations of 750–1050 m; in soils with a pH of 5.5–6.5, where 150–240 kg·ha−1 nitrogen with 25–35% content and an 80–100 day release period was applied, and the blending ratio was ≥0.3; and when planting rapeseed, maize, and cotton for 1–2 years. The top three influencing factors were crop type, nitrogen rate, and soil pH. Compared with C/SRF, MNF increased crop yield by 2.44% and had a non-significant increase in PFPN, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 5 °C, average annual precipitation ≤ 400 mm, and elevations of 300–900 m; in sandy soils with pH > 7.5, where 150–270 kg·ha−1 nitrogen with 25–30% content and a 40–80 day release period was applied, and the blending ratio was 0.4–0.7; and when planting potatoes and rapeseed for 3 years. The top three influencing factors were nitrogen rate, crop type, and average annual precipitation. In conclusion, MNF should comprehensively consider crops, regions, soil, and management. This study provides a scientific basis for optimizing slow-release nitrogen fertilizers and promoting the large-scale application of MNF in farmland. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

26 pages, 486 KiB  
Article
Towards Characterizing the Download Cost of Cache-Aided Private Updating
by Bryttany Stark, Ahmed Arafa and Karim Banawan
Entropy 2025, 27(8), 828; https://doi.org/10.3390/e27080828 (registering DOI) - 4 Aug 2025
Abstract
We consider the problem of privately updating a message out of K messages from N replicated and non-colluding databases where a user has an outdated version of the message W^θ of length L bits that differ from the current version [...] Read more.
We consider the problem of privately updating a message out of K messages from N replicated and non-colluding databases where a user has an outdated version of the message W^θ of length L bits that differ from the current version Wθ in at most f bits. The user also has a cache containing coded combinations of the K messages (with a pre-specified structure), which are unknown to the N databases (unknown prefetching). The cache Z contains linear combinations from all K messages in the databases with r=lL being the caching ratio. The user needs to retrieve Wθ correctly using a private information retrieval (PIR) scheme without leaking information about the message index θ to any individual database. Our objective is to jointly design the prefetching (i.e., the structure of said linear combinations) and the PIR strategies to achieve the least download cost. We propose a novel achievable scheme based on syndrome decoding where the cached linear combinations in Z are designed to be bits pertaining to the syndrome of Wθ according to a specific linear block code. We derive a general lower bound on the optimal download cost for 0r1, in addition to achievable upper bounds. The upper and lower bounds match for the cases when r is exceptionally low or high, or when K=3 messages for arbitrary r. Such bounds are derived by developing novel cache-aided arbitrary message length PIR schemes. Our results show a significant reduction in the download cost if f<L2 when compared with downloading Wθ directly using typical cached-aided PIR approaches. Full article
(This article belongs to the Special Issue Information-Theoretic Security and Privacy)
Show Figures

Figure 1

20 pages, 18635 KiB  
Article
The Passive Optimization Design of Large- and Medium-Sized Gymnasiums in Hot Summer and Cold Winter Regions Oriented on Energy Saving: A Case Study of Shanghai
by Yuda Lyu, Ziyi Long, Ruifeng Zhou and Xu Gao
Buildings 2025, 15(15), 2745; https://doi.org/10.3390/buildings15152745 - 4 Aug 2025
Abstract
With the promotion of national fitness, the requirements for regulating indoor environments during non-competition periods are low and relatively flexible under the trend of composite sports buildings. To maximize the use of natural ventilation and lighting for energy savings, passive optimization design based [...] Read more.
With the promotion of national fitness, the requirements for regulating indoor environments during non-competition periods are low and relatively flexible under the trend of composite sports buildings. To maximize the use of natural ventilation and lighting for energy savings, passive optimization design based on building ontology has emerged as an effective strategy. This paper focuses on the spatial prototype of large- and medium-sized gymnasiums, optimizing key geometric design parameters and envelope structure parameters that influence energy consumption. This optimization employs a combination of orthogonal experiments and performance simulations. This study identifies the degree to which each factor affects energy consumption in the competition hall and determines the optimal low-energy consumption gymnasium prototype. The results reveal that the skylight area ratio is the most significant factor impacting the energy consumption of large- and medium-sized gymnasiums. The optimized gymnasium prototype reduced energy consumption by 5.3%~50.9% compared to all experimental combinations. This study provides valuable references and insights for architects during the initial stages of designing sports buildings to achieve low energy consumption. Full article
Show Figures

Figure 1

20 pages, 4007 KiB  
Article
Sublethal and Lethal Effects of Low-Dose Prothioconazole Alone and in Combination with Low-Dose Lambda-Cyhalothrin on Carabid Beetles in a Field-Realistic Scenario
by Enno Merivee, Anne Mürk, Karin Nurme, Mati Koppel, Angela Ploomi and Marika Mänd
Pollutants 2025, 5(3), 24; https://doi.org/10.3390/pollutants5030024 - 4 Aug 2025
Abstract
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such [...] Read more.
Environmental risk assessment (ERA) for pesticide approval in the context of predatory insects remains inadequate as it often overlooks the influence of agricultural practices. An increasing number of studies have shown that prolonged and synergistic pesticide exposure can elevate insect mortality. However, such effects remain largely unstudied in non-target predatory carabid beetles. The carabid beetle Platynus assimilis was subjected to repeated oral and continuous contact exposure to low doses of prothioconazole (20 g ha−1), lambda-cyhalothrin (0.4 g ha−1), or their combination over a 64-day period. The food consumption rate, body mass, locomotor activity, and mortality were monitored throughout the experiment. All pesticide-treated groups showed significantly increased final mortality, with median lethal times (LT50) of 51.6 days for prothioconazole, 60.3 days for lambda-cyhalothrin, and 12.2 days for their combination. A significant synergistic effect on mortality was observed in the combined treatment group, with the highest synergistic ratio detected 20 days after the first exposure. Pesticide-treated beetles exhibited significant abnormalities in locomotor activity and body mass compared to the untreated group. These findings demonstrate that both time-cumulative mortality and potential synergistic interactions, reflecting field-realistic conditions, must be considered in ERA. Failure to do so may lead to an underestimation of pesticide toxicity to predatory carabids. Full article
Show Figures

Graphical abstract

33 pages, 4961 KiB  
Article
Study on Grinding Optimization of Cassiterite Polymetallic Sulfide Ore Based on Single-Factor Test Method
by Jinlin Yang, Pengyan Zhu, Xingjian Deng, Hengjun Li, Shaojian Ma and Dingzheng Wang
Minerals 2025, 15(8), 827; https://doi.org/10.3390/min15080827 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent [...] Read more.
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent beneficiation stages. Among these factors, the grinding media ratios stand as one of the critical factors influencing grinding efficiency. Based on these, the paper adopts the single-factor test method to systematically study the influence law of factors such as grinding time, mill rotational rate, and mill filling rate on the particle size composition of ore grinding products and the grinding technology efficiency under different media conditions; in addition, it is compared with the influence law of different conditions of media ratios on the grinding efficiency of ore. The results show that the optimal parameters of the grinding operation are obtained at the grinding time of 4 min, the mill rotational rate of 60%, and the filling rate of 35%. The grinding time and mill filling rate have a relatively more significant effect on the product particle size distribution, while the effect of the mill rotational rate is relatively less significant. When the parameters of grinding operations are optimal, the yield of qualified particle size and grinding technical efficiency are used as the evaluation indices, respectively. Overall, the order of the grinding effect of different media conditions was as follows: steel ball combination of Φ20 mm and Φ25 mm > steel balls of three single sizes > steel ball combination of Φ20 mm and Φ30 mm. The optimal grinding media ratios are Φ20 mm and Φ25 mm (the percentage of the Φ20 mm ball is 90%). The reasonable media ratios will effectively coordinate the optimal grinding effect between different media. The research results can provide the necessary basic data for the subsequent grinding optimization of cassiterite polymetallic sulfide ores. Full article
Show Figures

Figure 1

16 pages, 6440 KiB  
Article
Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement
by Jianli Chen, Yu Zheng, Benliu He, Shuzhong Chen, Shuai Wang, Feng Chen, Shiyuan Cui, Jing Liu, Lingzhi Yang, Yufeng Guo and Guanzhou Qiu
Metals 2025, 15(8), 870; https://doi.org/10.3390/met15080870 (registering DOI) - 3 Aug 2025
Viewed by 56
Abstract
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric [...] Read more.
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric acid heap leaching, the diffusion of leaching reagents and leaching products was hindered by the deposition of leaching solid products. To address this issue, this study systematically investigated the leaching kinetics and the mechanisms underlying the deposition of leaching solid products. The results indicated that vanadium leaching was governed by a combination of liquid film diffusion and internal diffusion through solid-phase products during days 0–2, and by internal diffusion alone from day 2 to day 9. The primary solid products formed during leaching were calcium sulfate and silica gel. Calcium sulfate precipitated and grew within the pore via two-dimensional nucleation, while silicates formed silica gel through dehydration. By optimizing the sulfuric acid leaching conditions—specifically, maintaining an H+ concentration of 2 mol/L, a leaching temperature of 40 °C, and a liquid-to-solid ratio of 5:1—the formation of calcium sulfate and silica gel was effectively suppressed. Under these conditions, the vanadium leaching efficiency reached 75.82%. Full article
(This article belongs to the Section Extractive Metallurgy)
Back to TopTop