Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement
Abstract
1. Introduction
2. Methodology
2.1. Raw Materials
2.2. Sulfuric Acid Leaching
2.3. Analysis and Characterization
3. Results and Discussion
3.1. Analysis of the Vanadium Leaching Kinetic Behavior
3.2. Calcium Sulfate Crystal Growth Mechanism
3.3. Silica Sol Agglomeration Mechanism
3.4. Sulfuric Acid Leaching Process Enhancement
4. Conclusions
- (1)
- The vanadium leaching was controlled by liquid film diffusion and internal diffusion of solid phase products during stage I (0–2 days), and by internal diffusion of solid phase products during stage II (2–9 days). The apparent activation energy Ea for vanadium sulfuric acid leaching was calculated to be 4.22 kJ/mol for stage I and 13.93 kJ/mol for stage II.
- (2)
- Calcium sulfate and silica gel are the main solid products formed in the sulfuric acid leaching process. Calcium sulfate preferentially aggregates into rod-shaped crystals within the center of the leached pellet compared to the shell, and the formation occurred via spontaneous two-dimensional nucleation within the pore spaces. While silicic acid molecules polymerize with each other to form silica sols, the silica sols further grow and combine to form a silicate gel.
- (3)
- Under the H+ concentration of 2 mol/L, a leaching temperature of 40 °C, and a liquid–solid ratio of 5:1, the sulfuric acid leaching process was optimized to mitigate the formation of calcium sulfate and silica sol; thereby, the vanadium leaching efficiency reached 75.28%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Yu, W.; Xiang, J.; Liu, W.; Zhong, D.; Xu, S.; Lv, X. Toward High-Purity Vanadium-Based Materials: Fundamentals, Purifications, and Perspectives. J. Clean. Prod. 2024, 476, 143721. [Google Scholar] [CrossRef]
- Graedel, T.E.; Miatto, A. Vanadium: A U.S. Perspective on an Understudied Metal. Environ. Sci. Technol. 2023, 57, 8933–8942. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G.K. Development of Vanadium Based Hydrogen Storage Material: A Review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Zhang, S.; Wu, S.; Chen, F.; Xu, J. A Comparative Study of Iron-Vanadium and All-Vanadium Flow Battery for Large Scale Energy Storage. Chem. Eng. J. 2022, 429, 132403. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, Z.; Zhu, D.; Pan, J.; Lu, S. Isothermal Reduction Kinetics and Microstructure Evolution of Various Vanadium Titanomagnetite Pellets in Direct Reduction. J. Alloys Compd. 2023, 953, 170126. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, W.; Dai, Z.; Yao, L.; Yang, L.; Zheng, J. Advancements and Challenges in Vanadium Extraction Processes from Vanadium Titano-Magnetite and Its Derivatives. Resour. Conserv. Recycl. 2025, 216, 108178. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, Y.; Wu, C.; Han, X.; Zhao, N.; Zhang, Z.; Dai, L.; Wang, L.; He, Z. A Review on Vanadium Extraction Techniques from Major Vanadium-Containing Resources. Rare Met. 2024, 43, 4115–4131. [Google Scholar] [CrossRef]
- Li, C.; Jiang, T.; Wen, J.; Yu, T.; Li, F. Review of Leaching, Separation and Recovery of Vanadium from Roasted Products of Vanadium Slag. Hydrometallurgy 2024, 226, 106313. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Chen, J.; Ye, L.; Du, J. Research Progress of Vanadium Extraction Processes from Vanadium Slag: A Review. Sep. Purif. Technol. 2024, 342, 127035. [Google Scholar] [CrossRef]
- Yang, M.; Yang, J. Vanadium Extraction from Steel Slag: Generation, Recycling and Management. Environ. Pollut. 2024, 343, 123126. [Google Scholar] [CrossRef]
- Hui, X.; Zhang, J.; Liang, Y.; Chang, Y.; Zhang, W.; Zhang, G. Comparison and Evaluation of Vanadium Extraction from the Calcification Roasted Vanadium Slag with Carbonation Leaching and Sulfuric Acid Leaching. Sep. Purif. Technol. 2022, 297, 121466. [Google Scholar] [CrossRef]
- Liu, F.; Sun, D.; Zhu, R.; Dong, K.; Bai, R. Effect of Side-Blowing Arrangement on Flow Field and Vanadium Extraction Rate in Converter Steelmaking Process. ISIJ Int. 2018, 58, 852–859. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, P. Optimization on Temperature Strategy of BOF Vanadium Extraction to Enhance Vanadium Yield with Minimum Carbon Loss. Metals 2021, 11, 906. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.; Chen, S.; Chen, F.; Wang, S.; Guo, Y.; Li, H.; Xu, F.; Zhang, J.; Yang, L. Effect of Calcification Roasting Process on Vanadium Oxidation and Extraction from Vanadium Titanomagnetite Pellets via Sulfuric Acid Leaching: Mechanism and Enhancement. Sep. Purif. Technol. 2025, 354, 128859. [Google Scholar] [CrossRef]
- Gao, F.; Du, H.; Wang, S.; Chen, B.; Li, J.; Zhang, Y.; Li, M.; Liu, B.; Olayiwola, A.U. A Comparative Study of Extracting Vanadium from Vanadium Titano-Magnetite Ores: Calcium Salt Roasting vs. Sodium Salt Roasting. Miner. Process. Extr. Metall. Rev. 2023, 44, 352–364. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Guo, Y.; Gao, Q.; Shen, F. Transformation of Vanadium-Bearing Titanomagnetite Concentrate in Additive-Free Roasting and Alkaline-Pressure Leaching for Extracting Vanadium (V). Minerals 2019, 9, 197. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Zhao, S.; Yao, Z.; Wang, C.; Wang, B.; Gao, M.; Feng, G. Vanadium Extraction from Water-Cooled Vanadium Converter Slag via Salt-Free Roasting and Acid Leaching. Process Saf. Environ. Prot. 2023, 172, 727–737. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Xiao, R.; Luo, J.; Yi, L.; Rao, M. Extraction of Vanadium from Low-Vanadium Grade Magnetite Concentrate Pellets with Sodium Salt. J. Mater. Res. Technol. 2021, 15, 5712–5722. [Google Scholar] [CrossRef]
- Yan, Z.; Zheng, S.; Zhang, Y.; Zhang, Y.; Zhou, Z.; Qiao, S. Sodium Carbonate Roasting and Mild Acid Leaching of Vanadium Titanomagnetite Concentrates: Vanadium Extraction and Residue Sodium Decrease. Process Saf. Environ. Prot. 2024, 185, 1132–1144. [Google Scholar] [CrossRef]
- Luo, Y.; Che, X.; Cui, X.; Zheng, Q.; Wang, L. Selective Leaching of Vanadium from V-Ti Magnetite Concentrates by Pellet Calcification Roasting-H2SO4 Leaching Process. Int. J. Min. Sci. Technol. 2021, 31, 507–513. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Z.; Han, Z.; Zhu, Y.; Li, Y.; Xie, K. Vanadium–Titanium Magnetite Concentrate, Calcium–Magnesium Composite Roasting and Sulfuric Acid Leaching for Vanadium Extraction from Pellets. Metals 2023, 13, 1135. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Z.; Wang, Z.; Zhu, Y.; Xie, K. Study on the Properties of Vanadium Pellets Extracted from Vanadium Titanium Magnetite Concentrate by Calcium Roasting and Acid Leaching. Minerals 2023, 13, 399. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, Z.; Li, Y.; Zhu, Y.; Xie, K. Selective Sulfuric Acid Cyclic Leaching of Vanadium from the Calcification Roasting Pellets of Vanadium Titanomagnetite. J. Mater. Res. Technol. 2023, 23, 778–790. [Google Scholar] [CrossRef]
- Zheng, F.; Guo, Y.; Chen, F.; Wang, S.; Zhang, J.; Yang, L.; Qiu, G. Fluoride Leaching of Titanium from Ti-Bearing Electric Furnace Slag in [NH4+]-[F−] Solution. Metals 2021, 11, 1176. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, T.; Xu, Y.; Wen, J.; Xue, X. Leaching Kinetics of Vanadium and Chromium During Sulfuric Acid Leaching With Microwave and Conventional Calcification-Roasted High Chromium Vanadium Slag. Miner. Process. Extr. Metall. Rev. 2020, 41, 22–31. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J.; Zheng, X.; Liu, Z.; Tao, C. Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium. J. Environ. Chem. Eng. 2018, 6, 5119–5124. [Google Scholar] [CrossRef]
- Ye, J.; Chen, J.; Luo, K.; Yan, F.; Zhang, W. The leaching model and leaching kinetics of lithium slag in alkaline solution. Constr. Build. Mater. 2024, 432, 136642. [Google Scholar] [CrossRef]
- Lv, N.; Chen, H.; Su, C.; Wang, H.; Dong, Y.; Wu, L. Kinetics Investigation of Phosphorus Leaching from Steelmaking Slag. Miner. Process. Extr. Metall. Rev. 2023, 44, 571–576. [Google Scholar] [CrossRef]
Raw Material | TFe | FeO | CaO | SiO2 | MgO | Al2O3 | TiO2 | V2O5 | Cr2O3 |
---|---|---|---|---|---|---|---|---|---|
Roasted pellet | 56.12 | 0.26 | 1.54 | 2.10 | 2.68 | 2.09 | 11.13 | 0.64 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zheng, Y.; He, B.; Chen, S.; Wang, S.; Chen, F.; Cui, S.; Liu, J.; Yang, L.; Guo, Y.; et al. Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement. Metals 2025, 15, 870. https://doi.org/10.3390/met15080870
Chen J, Zheng Y, He B, Chen S, Wang S, Chen F, Cui S, Liu J, Yang L, Guo Y, et al. Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement. Metals. 2025; 15(8):870. https://doi.org/10.3390/met15080870
Chicago/Turabian StyleChen, Jianli, Yu Zheng, Benliu He, Shuzhong Chen, Shuai Wang, Feng Chen, Shiyuan Cui, Jing Liu, Lingzhi Yang, Yufeng Guo, and et al. 2025. "Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement" Metals 15, no. 8: 870. https://doi.org/10.3390/met15080870
APA StyleChen, J., Zheng, Y., He, B., Chen, S., Wang, S., Chen, F., Cui, S., Liu, J., Yang, L., Guo, Y., & Qiu, G. (2025). Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement. Metals, 15(8), 870. https://doi.org/10.3390/met15080870