Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
Abstract
1. Introduction
- (i)
- Evaluating the interactive effects of brick waste powder (BWP) as a filler and polyester fibers (PFs) of varying lengths (3 mm, 8 mm, and 15 mm) on key mechanical and durability properties of asphalt concrete (AC) mixes;
- (ii)
- Developing and validating predictive models for bulk density, air voids, Marshall properties, indirect tensile strength, and tensile strength ratio using response surface methodology (RSM) and analysis of variance (ANOVA);
- (iii)
- Determining the optimal combination of filler type and fiber length to enhance AC performance, with a specific focus on identifying the most effective PF length (found to be approximately 5 mm) through multi-objective optimization.
Research Significance
2. Materials and Experiments
2.1. Materials
2.1.1. Aggregates
2.1.2. Asphalt
2.1.3. Fillers
2.1.4. Fiber
2.2. Mix Design
2.3. Test Procedures
2.3.1. Marshall Test
2.3.2. Indirect Tensile Strength (ITS) Test
2.3.3. Water Sensitivity Test
2.4. Variables and Mixtures by RSM
3. Results and Discussion
3.1. Marshall Properties
3.2. Cracking Properties (Indirect Tensile Strength)
3.3. Mechanistic Insights into Material Interactions
3.4. Water Sensitivity (Indirect Tensile Strength Ratio)
3.5. Response Surface Methodology (RSM)
3.5.1. Model Development and ANOVA
3.5.2. The 2D Contours and 3D Response Surfaces
3.5.3. Multi-Objective Optimization of Response Using Desirability Functions (DFs)
Optimization Results by DF
3.5.4. Validation of Optimization Results
4. Conclusions
- Substituting limestone filler (LS) with BWP enhanced moisture resistance, indirect tensile strength (ITS), and Marshall stability. BWP showed superior pozzolanic activity and stronger binder-aggregate adhesion.
- PF addition improved tensile strength, Marshall stability, and resistance to moisture damage, with performance trends depending on fiber length.
- Among the tested fiber lengths (3 mm, 8 mm, and 15 mm), 8 mm provided the best mechanical performance. However, RSM optimization indicated 5 mm as the statistically optimal length when multiple responses were simultaneously considered.
- The predictive RSM model showed an error below 8%, confirming its reliability for performance prediction and mix design optimization.
4.1. Study Limitations and Future Research Directions
4.2. Economic and Practical Considerations
4.3. Industrial Feasibility
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Q.; Chen, H.; Prozzi, J.A. Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Constr. Build. Mater. 2010, 24, 2003–2010. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Z.; Ye, Q.; Liao, W. Effects of fibre additive on the high temperature property of asphalt binder. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2006, 21, 118–120. [Google Scholar] [CrossRef]
- Park, P.; El-Tawil, S.; Park, S.Y.; Naaman, A.E. Cracking resistance of fiber reinforced asphalt concrete at −20 °C. Constr. Build. Mater. 2015, 81, 47–57. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Constr. Build. Mater. 2020, 240, 117932. [Google Scholar] [CrossRef]
- Khaled, T.T.; Kareem, A.I.; Mohamad, S.A.; Al-Hamd, R.K.S.; Minto, A. The Performance of Modified Asphalt Mixtures with Different Lengths of Glass Fiber. Int. J. Pavement Res. Technol. 2024. [Google Scholar] [CrossRef]
- Notani, M.A.; Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K. Effect of carbon-fiber properties on volumetrics and ohmic heating of electrically conductive asphalt concrete. J. Mater. Civ. Eng. 2019, 31, 04019200. [Google Scholar] [CrossRef]
- Klinsky, L.; Kaloush, K.; Faria, V.; Bardini, V. Performance characteristics of fiber modified hot mix asphalt. Constr. Build. Mater. 2018, 176, 747–752. [Google Scholar] [CrossRef]
- Arabani, M.; Shabani, A. Evaluation of the ceramic fiber modified asphalt binder. Constr. Build. Mater. 2019, 205, 377–386. [Google Scholar] [CrossRef]
- Morea, F.; Zerbino, R. Improvement of asphalt mixture performance with glass macro-fibers. Constr. Build. Mater. 2018, 164, 113–120. [Google Scholar] [CrossRef]
- Karanam, G.D.; Underwood, B.S. Mechanical Characterization and Performance Prediction of Fiber-Modified Asphalt Mixes. Int. J. Pavement Res. Technol. 2024. [Google Scholar] [CrossRef]
- Khan, D.; Khan, R.; Khan, M.T.; Alam, M.; Hassan, T. Performance of hot-mix asphalt using polymer-modified bitumen and marble dust as a filler. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 385–398. [Google Scholar] [CrossRef]
- Modarres, A.; Rahmanzadeh, M. Application of coal waste powder as filler in hot mix asphalt. Constr. Build. Mater. 2014, 66, 476–483. [Google Scholar] [CrossRef]
- Tessema, A.T.; Wolelaw, N.M.; Alene, G.A. A Laboratory Study on the influence of Coffee Husk Ash and Slag Ash Fillers on the Performance of Bituminous Concrete Mixes. Int. J. Pavement Res. Technol. 2023, 18, 405–417. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Yao, Z.; Wu, S.; Jiang, H.; Liang, M. Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Constr. Build. Mater. 2018, 180, 605–613. [Google Scholar] [CrossRef]
- Khan, N.; Karim, F.; Qureshi, Q.B.A.I.L.; Mufti, S.A.; Rabbani, M.B.A.; Khan, M.S.; Khan, D. Effect of Fine Aggregates and Mineral Fillers on the Permanent Deformation of Hot Mix Asphalt. Sustainability 2023, 15, 10646. [Google Scholar] [CrossRef]
- Choudhary, J.; Kumar, B.; Gupta, A. Evaluation of engineering, economic and environmental suitability of waste filler incorporated asphalt mixes and pavements. Road Mater. Pavement Des. 2021, 22, S624–S640. [Google Scholar] [CrossRef]
- Samuel, J.; Okafor, F.O. Optimization of Indirect Tensile Strength of Modified Asphalt Concrete Using Ceramic Tile Wastes and Quarry Dust. Int. J. Pavement Res. Technol. 2023, 18, 979–991. [Google Scholar] [CrossRef]
- Awed, A.M.; Tarbay, E.W.; El-Badawy, S.M.; Azam, A.M. Performance characteristics of asphalt mixtures with industrial waste/by-product materials as mineral fillers under static and cyclic loading. Road Mater. Pavement Des. 2020, 23, 335–357. [Google Scholar] [CrossRef]
- Kamran, M.; Khan, M.T.; Khan, D.; Hasan, M.R.M.; Khan, N.; Ullah, M. Experimental evaluation of hot mix asphalt using coal bottom ash as partial filler replacement. Roads Bridg. 2023, 22, 167–179. [Google Scholar] [CrossRef]
- Sarir, M.; Wu, Z.; Khan, R.; Alam, M.; Ali, B.; Laib, S.; Khan, G. Evaluation of stability and flow properties of bagasse ash as a filler in asphalt concrete for sustainable infrastructure. Adv. Sci. Technol. Res. J. 2025, 19, 271–283. [Google Scholar] [CrossRef]
- Tavakoli, D.; Fakharian, P.; de Brito, J. Mechanical properties of roller-compacted concrete pavement containing recycled brick aggregates and silica fume. Road Mater. Pavement Des. 2022, 23, 1793–1814. [Google Scholar] [CrossRef]
- Kofteci, S.; Nazary, M. Experimental study on usability of various construction wastes as fine aggregate in asphalt mixture. Constr. Build. Mater. 2018, 185, 369–379. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, J.; Zhong, J.; Wang, D. Experimental investigation on related properties of asphalt mastic containing recycled red brick powder. Constr. Build. Mater. 2011, 25, 2883–2887. [Google Scholar] [CrossRef]
- Almadwi, F.S.; Assaf, G.J. Effects of brick powder on the properties of asphalt mixes. J. Mater. Civ. Eng. 2021, 33, 04020429. [Google Scholar] [CrossRef]
- Arabani, M.; Tahami, S.A.; Taghipoor, M. Laboratory investigation of hot mix asphalt containing waste materials. Road Mater. Pavement Des. 2016, 18, 713–729. [Google Scholar] [CrossRef]
- Chen, M.; Lin, J.; Wu, S.; Liu, C. Utilization of recycled brick powder as alternative filler in asphalt mixture. Constr. Build. Mater. 2011, 25, 1532–1536. [Google Scholar] [CrossRef]
- Chen, J.S.; Lin, K.Y.I. Mechanism and behavior of bitumen strength reinforcement using fibers. J. Mater. Sci. 2005, 40, 87–95. [Google Scholar] [CrossRef]
- Wu, S.; Ye, Q.; Li, N. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Constr. Build. Mater. 2008, 22, 2111–2115. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.; Yoo, D.Y.; Shin, H.O. Enhancing mechanical properties of asphalt concrete using synthetic fibers. Constr. Build. Mater. 2018, 178, 233–243. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, B.; Yan, Y.; Chen, H.; Xiong, R.; Geng, J. Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures. Constr. Build. Mater. 2017, 141, 289–295. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Q.; Chen, S.; Zhang, Z. Evaluation and design of fiber-reinforced asphalt mixtures. Mater. Des. 2009, 30, 2595–2603. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Laboratory assessment of the performance and elastic behavior of asphalt mixtures containing steel slag aggregate and synthetic fibers. Int. J. Pavement Res. Technol. 2021, 14, 473–481. [Google Scholar] [CrossRef]
- Taherkhani, H.; Bayat, R. Investigating the properties of asphalt concrete containing recycled brick powder as filler. Eur. J. Environ. Civ. Eng. 2022, 26, 3583–3593. [Google Scholar] [CrossRef]
- Hussein, Z.M.; Tayh, S.A.; Jasim, A.F. Assessing the Influence of Brick Powder as Filler in Asphalt Hot Mixes. Eng. Technol. Appl. Sci. Res. 2025, 15, 19159–19166. [Google Scholar] [CrossRef]
- Yue, T.; Qiang, L. Application of polyester fiber in improvement engineering of asphalt concrete pavement maintenance. J. Highway Transp. Res. Dev. 2004, 12, 11. [Google Scholar] [CrossRef]
- Guo, Y.; Tataranni, P.; Sangiorgi, C. The use of fibres in asphalt mixtures: A state of the art review. Constr. Build. Mater. 2023, 390, 131754. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Singh, N.S.S.; Alawag, A.M. Applications of synthetic, natural, and waste fibers in asphalt mixtures: A citation-based review. Polymers 2023, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Ma, H.; Feng, J.; Yang, R.; Huang, X. Fiber reinforcing effect on asphalt binder under low temperature. Constr. Build. Mater. 2014, 61, 120–124. [Google Scholar] [CrossRef]
- Putman, B.J.; Amirkhanian, S.N. Utilization of waste fibers in stone matrix asphalt mixtures. Resour. Conserv. Recycl. 2004, 42, 265–274. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, S.; Li, N. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures. Int. J. Fatigue 2009, 31, 1598–1602. [Google Scholar] [CrossRef]
- Hong, R.B.; Wu, J.R.; Cai, H.B. Low-temperature crack resistance of coal gangue powder and polyester fibre asphalt mixture. Constr. Build. Mater. 2020, 238, 117678. [Google Scholar] [CrossRef]
- Chetbani, Y.; Zaitri, R.; Tayeh, B.A.; Hakeem, I.Y.; Dif, F.; Kellouche, Y. Physicomechanical Behavior of High-Performance Concrete Reinforced with Recycled Steel Fibers from Twisted Cables in the Brittle State—Experimentation and Statistics. Buildings 2023, 13, 2290. [Google Scholar] [CrossRef]
- Benkhelladi, A.; Laouissi, A.; Laouici, H.; Bouchoucha, A.; Karmi, Y.; Chetbani, Y. Assessment of hybrid composite drilling and prediction of cutting parameters by ANFIS and deep neural network approach. Int. J. Adv. Manuf. Technol. 2024, 135, 589–606. [Google Scholar] [CrossRef]
- Chetbani, Y.; Boumaaza, M.; Zaitri, R.; Belaadi, A.; Ben Mahammed, A.; Laouissi, A.; Alshaikh, I.M.; Ghernaout, D. Study of the Effect of Hemp Fibers and Brick Waste Powder on the Mechanical Characteristics of Mortar: Experimental and Statistical Analysis. J. Nat. Fibers 2025, 22, 2438900. [Google Scholar] [CrossRef]
- Raouache, E.; Boumaaza, M.; Chetbani, Y.; Belaadi, A.; Logzit, N.; Ghernaout, D.; Laouissi, A. Shearing behavior of short high-performance concrete beams reinforced with swimmer bars: Experimental and statistical studies. Eur. J. Environ. Civ. Eng. 2025, 29, 1912–1934. [Google Scholar] [CrossRef]
- Awolusi, T.F.; Oke, O.L.; Akinkurolere, O.O.; Sojobi, A.O. Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Stud. Constr. Mater. 2019, 10, e00212. [Google Scholar] [CrossRef]
- Homayoonfal, M.; Khodaiyan, F.; Mousavi, S.M. Modeling and optimizing of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability. Food Chem. 2014, 174, 649–659. [Google Scholar] [CrossRef]
- Mumtaz, M.W.; Adnan, A.; Anwar, F.; Mukhtar, H.; Raza, M.A.; Ahmad, F.; Rashid, U. Response surface methodology: An emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies 2012, 5, 3307–3328. [Google Scholar] [CrossRef]
- Sarabia, L.A.; Ortiz, M.C. Response Surface Methodology. Compr. Chemom. 2009, 1, 345–390. [Google Scholar]
- Mezaouri, S.; Mamoune, S.M.A.; Siad, H.; Lachemi, M.; Boumaaza, M.; Belaadi, A.; Alshaikh, I.M.; Ghernaout, D.; Chetbani, Y.; Laouissi, A. Prediction of cementitious composite characteristics based on waste glass powder and aggregates: Experimental and statistical analysis. Measurement 2025, 253, 117609. [Google Scholar] [CrossRef]
- Saiah, W.; Rabahi, A.; Boumaaza, M.; Hani, M.; Belaadi, A.; Chetbani, Y.; Saidi, H.; Laouissi, A.; Ghernaout, D.; Ammarullah, M.I.; et al. Antioxidant, anti-inflammatory, and anti-diabetic assessment of (2Z)-2 (arylimino)-2Hchromene-3-carboxamides: An in vitro-in silico study by applying ANN-GA, MCDM, and RSM optimization techniques. Results Chem. 2025, 15, 102249. [Google Scholar] [CrossRef]
- Bouyaya, L.; Belaadi, A.; Boumaaza, M.; Lekrine, A.; Chai, B.X.; Chetbani, Y.; Abdullah, M.M.S.; Ghernaout, D.; Alshaikh, I.M.H. Chemical Processing Effect on the Tensile Strength of Waste Palm Fiber-Reinforced HDPE Biocomposite: Optimizing Using Response Surface Methodology. J. Nat. Fibers 2024, 21, 2421810. [Google Scholar] [CrossRef]
- Raouache, E.; Laouissi, A.; Khalfallah, F.; Chetbani, Y. Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization. Int. J. Adv. Manuf. Technol. 2024, 132, 1005–1017. [Google Scholar] [CrossRef]
- Soderberg, A. Fermentation design. In Fermentation and Biochemical Engineering Handbook, 3rd ed.; Todaro, C.M., Vogel, H.C., Eds.; William Andrew: Amsterdam, The Netherlands, 2014; pp. 85–108. [Google Scholar]
- Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Organisme de Contrôle Technique des Travaux Publics (CTTP). Recommandations Algériennes sur L’utilisation des Bitumes et des Enrobés Bitumineux à Chaud; CTTP: Algiers, Algeria, 2004. [Google Scholar]
- Liu, W.; Du, R.; Zhang, R.; Zhao, Z.; Zhang, L.; Li, H. Optimal design and performance of eco-friendly materials stabilized with inorganic binder based on fluidized bed coal combustion fly ash and regenerated brick powder. J. Build. Eng. 2023, 65, 105800. [Google Scholar] [CrossRef]
- Őze, C.; Badacsonyi, N.; Makó, É. Mechanochemical Activation of Waste Clay Brick Powder with Addition of Waste Glass Powder and Its Influence on Pozzolanic Reactivity. Molecules 2024, 29, 5740. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Fu, W.; Raza, A.; Li, H. Study on mechanical properties and mechanism of recycled brick powder UHPC. Buildings 2022, 12, 1622. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, G.; Wu, D.; Fang, S.; Tang, Y. Investigation of using the ceramic polishing brick powder in engineered cementitious composites. J. Build. Eng. 2021, 43, 102489. [Google Scholar] [CrossRef]
- Rashad, A.M.; Abdu, M.F.A. Accelerated aging resistance, abrasion resistance and other properties of alkali-activated slag mortars containing limestone powder. Sustain. Chem. Pharm. 2024, 37, 101406. [Google Scholar] [CrossRef]
- Wang, Q.; Lyu, X.; Liu, Q.; Liu, X.; Zhou, W. Recycle of soda waste sludge as the limestone material for Portland cement: Chemical composition, physical properties and hydration mechanism. Constr. Build. Mater. 2024, 422, 135790. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ferraris, C.F.; Jones, S.Z.; Lootens, D.; Zunino, F. Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Compos. 2017, 78, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Long, G.; He, J.; Xie, Y.; Tang, Z.; Zhou, X.; Bai, M.; Zhou, J.L. Fabrication of energy-efficient carbonate-based cementitious material using sodium meta-aluminate activated limestone powder. ACS Sustain. Chem. Eng. 2022, 10, 6559–6572. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J. Utilization of carbonated alkaline solid wastes in ordinary Portland cement-metakaolin-limestone ternary mixture: Underlying the role of low grade-sustainable calcium carbonate sources. J. Clean. Prod. 2024, 456, 142382. [Google Scholar] [CrossRef]
- EN 12697-34; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 34: Marshall Test. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN 12697-23; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 23: Determination of the Indirect Tensile Strength of Bituminous Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN 12697-12; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 12: Determination of the Water Sensitivity of Bituminous Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Choudhary, J.; Kumar, B.; Gupta, A. Application of waste materials as fillers in bituminous mixes. Waste Manag. 2018, 78, 417–425. [Google Scholar] [CrossRef]
- Akbulut, H.; Gürer, C.; Çetin, S.; Elmaci, A. Investigation of using granite sludge as filler in bituminous hot mixtures. Constr. Build. Mater. 2012, 36, 430–436. [Google Scholar] [CrossRef]
- Lavin, P.G. Asphalt Pavements, A Practical Guide to Design, Production, and Maintenance for Engineers and Architects, 1st ed.; Taylor & Francis: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Uzun, S.; Terzi, S. Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Constr. Build. Mater. 2012, 31, 284–288. [Google Scholar] [CrossRef]
- Asphalt Institute. Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types (Manual Series No. 2 (MS-2)), 6th ed.; Asphalt Institute: Lexington, KY, USA, 1993. [Google Scholar]
- Hesami, E. Characterisation and Modelling of Asphalt Mastics and Their Effect on Workability. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2014. [Google Scholar]
- Hinislioglu, S.; Agar, E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Christensen, D.W.; Bonaquist, R.F. NCHRP Report 567: Volumetric Requirements for Superpave Mix Design; Transportation Research Board: Washington, DC, USA, 2006. [Google Scholar]
- Jenks, C.W.; Jencks, C.F.; Harrigan, E.T.; Adcock, M.; Delaney, E.P.; Freer, H. NCHRP Report 673: A Manual for Design of Hot-Mix Asphalt with Commentary; Transportation Research Board: Washington, DC, USA, 2011. [Google Scholar]
- Anagnos, J.N.; Kennedy, T.W. Practical Method of Conducting the Indirect Tensile Test. Center for Highway Research; Research Report 98–10; University of Texas at Austin: Austin, TX, USA, 1972. [Google Scholar]
- Wu, H.; Xiao, J.; Liang, C.; Ma, Z. Properties of cementitious materials with recycled aggregate and powder both from clay brick waste. Buildings 2021, 11, 119. [Google Scholar] [CrossRef]
- Tanash, A.O.; Muthusamy, K.; Yahaya, F.M.; Ismail, M.A. Potential of recycled powder from clay Brick, sanitary Ware, and concrete waste as a cement substitute for Concrete: An overview. Constr. Build. Mater. 2023, 401, 132760. [Google Scholar] [CrossRef]
- Liang, G.; Luo, L.; Yao, W. Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resour. Conserv. Recycl. 2022, 185, 106523. [Google Scholar] [CrossRef]
- Al-Noaimat, Y.A.; Chougan, M.; Albar, A.; Skibicki, S.; Federowicz, K.; Hoffman, M.; Sibera, D.; Cendrowski, K.; Techman, M.; Pacheco, J.N.; et al. Recycled brick aggregates in one-part alkali-activated materials: Impact on 3D printing performance and material properties. Dev. Built Environ. 2023, 16, 100248. [Google Scholar] [CrossRef]
- Sharmin, S.; Biswas, W.K.; Sarker, P.K. Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review. Buildings 2024, 14, 2317. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, Y.; Guo, P.; Underwood, S.; Chen, H.; Kim, Y.R.; Li, Y.; Ma, Q. Effect of synthetic fibers on the mechanical performance of asphalt mixture: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 331–348. [Google Scholar] [CrossRef]
- Qiao, Y.; Shin, Y.; Pallaka, M.R.; Nickerson, E.K.; Fring, L.D.; Ko, S.; Ramos, J.L.; Wu, H.F.; Simmons, K.L. Polymer-fiber-reinforced polymers with enhanced interfacial bonding between polypropylene fiber and polyethylene matrix. J. Reinf. Plast. Compos. 2024. [Google Scholar] [CrossRef]
- Radzi, F.; Suriani, M.; Abu Bakar, A.; Khalina, A.; Ruzaidi, C.; Nik, W.W.; Awang, M.; Zulkifli, F.; Abdullah, S.; Ilyas, R.; et al. Effect of reinforcement of Alkaline-treated sugar palm/bamboo/kenaf and fibreglass/Kevlar with polyester hybrid biocomposites: Mechanical, morphological, and water absorption properties. J. Mater. Res. Technol. 2023, 24, 4190–4202. [Google Scholar] [CrossRef]
- Wu, S.; Haji, A.; Adkins, I. State of art review on the incorporation of fibres in asphalt pavements. Road Mater. Pavement Des. 2023, 24, 1559–1594. [Google Scholar] [CrossRef]
- Noorvand, H.; Mamlouk, M.; Kaloush, K. Evaluation of optimum fiber length in fiber-reinforced asphalt concrete. J. Mater. Civ. Eng. 2022, 34, 4021494. [Google Scholar] [CrossRef]
- Bensmail, M.; Zaitri, R.; Hani, M.; Chetbani, Y.; Benamara, D.; Laouissi, A. Analyzing the effects of recycled aggregates on the workability and mechanical characteristics of concrete through mixture design and optimization techniques. World J. Eng. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- Mohamed, S.; Tayeb, B. Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete. Adv. Concr. Constr. 2019, 7, 97. [Google Scholar]
- Chiappini, F.A.; Azcarate, S.M.; Teglia, C.M.; Goicoechea, H.C. Fundamentals of Design of Experiments and Optimization: Data Modeling in Response Surface Methodology. In Introduction to Quality by Design in Pharmaceutical Manufacturing and Analytical Development; Springer: Berlin/Heidelberg, Germany, 2023; pp. 67–89. [Google Scholar]
- Taavitsainen, V.-M.T. Experimental optimization and response surfaces. In Chemometrics in Practical Applications; IntechOpen Limited: London, UK, 2012; pp. 91–138. [Google Scholar]
- Hong, W.C.; Mohammed, B.S.; Abdulkadir, I.; Liew, M.S. Modeling and Optimizing the Effect of Palm Oil Fuel Ash on the Properties of Engineered Cementitious Composite. Buildings 2023, 13, 628. [Google Scholar] [CrossRef]
- Myers, J.L.; Well, A.D.; Lorch, R.F., Jr. Research Design and Statistical Analysis; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Lee, D.K. Alternatives to P value: Confidence interval and effect size. Korean J. Anesthesiol. 2016, 69, 555. [Google Scholar] [CrossRef]
- Nouri, Y.; Ghanbari, M.A.; Fakharian, P. An integrated optimization and ANOVA approach for reinforcing concrete beams with glass fiber polymer. Decis. Anal. J. 2024, 11, 100479. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Mohammed, B.S. RSM Analysis and Study on the 6 Months Compressive Strength Development and Shrinkage Behaviour of High Volume Fly Ash Rubberized ECC (HVFA-RECC). Int. J. Adv. Res. Eng. Technol. (IJARET) 2020, 11, 965–980. [Google Scholar]
- Laouissi, A.; Yallese, M.A.; Belbah, A.; Khellaf, A.; Haddad, A. Comparative study of the performance of coated and uncoated silicon nitride (Si3N4) ceramics when machining EN-GJL-250 cast iron using the RSM method and 2D and 3D roughness functional parameters. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 205. [Google Scholar] [CrossRef]
- Pilkington, J.L.; Preston, C.; Gomes, R.L. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crops Prod. 2014, 58, 15–24. [Google Scholar] [CrossRef]
- Sherre, T.K.; Liao, M.-C. Characteristics of recycled mineral fillers and their effects on the mechanical properties of hot-mix asphalt when used as limestone filler replacements. J. Mater. Civ. Eng. 2022, 34, 4021395. [Google Scholar] [CrossRef]
- Tiwari, N.; Baldo, N.; Satyam, N.; Miani, M. Mechanical characterization of industrial waste materials as mineral fillers in asphalt mixes: Integrated experimental and machine learning analysis. Sustainability 2022, 14, 5946. [Google Scholar] [CrossRef]
- Boulghebar, K.; Sadok, A.H.; Brahma, A. Effect of recycled brick sand on mechanical and transfer properties of roller compacted concrete ‘RCC’ used for dams. Matéria 2025, 30, 20240703. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Xie, K.; Sun, A.; Liu, J.; Ren, T. Microscopic differences in void characteristics of porous asphalt mixtures and their effect on mechanical and functional performances with different compaction methods. Constr. Build. Mater. 2024, 431, 136575. [Google Scholar] [CrossRef]
- Liu, S.; Liao, J.; Hu, W.; Zhang, Z.; Ashiru, M.; Fang, C.; Chen, Y. Study on the influence of coarse aggregate distribution uniformity on the compaction characteristics of gap-graded gravels. Comput. Geotech. 2024, 170, 106293. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.; Liu, Y.; Cui, J. Prediction on nonlinear mechanical performance of random particulate composites by a statistical second-order reduced multiscale approach. Acta Mech. Sin. 2021, 37, 570–588. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Srivastava, A. Response surface methodology (RSM) in the reliability analysis of geotechnical systems. In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 1–6 October 2008; pp. 4147–4165. [Google Scholar]
- Alkharisi, M.K.; Dahish, H.A. The Application of Response Surface Methodology and Machine Learning for Predicting the Compressive Strength of Recycled Aggregate Concrete Containing Polypropylene Fibers and Supplementary Cementitious Materials. Sustainability 2025, 17, 2913. [Google Scholar] [CrossRef]
- Dornheim, J.; Morand, L.; Nallani, H.J.; Helm, D. Neural networks for constitutive modeling: From universal function approximators to advanced models and the integration of physics. Arch. Comput. Methods Eng. 2024, 31, 1097–1127. [Google Scholar] [CrossRef]
- Qu, P.-F.; Zhang, L.-M.; Zhu, Q.-Z. Meta-modeling of fractional constitutive relationships for rocks based on physics-induced machine learning. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 1000–1021. [Google Scholar] [CrossRef]
- Sada, S.O. Modeling performance of response surface methodology and artificial neural network. J. Appl. Sci. Environ. Manag. 2018, 22, 875–881. [Google Scholar] [CrossRef]
Property | Standard | Coarse Aggregate (8/16) | Coarse Aggregate (4/8) | Fine Aggregate (0/4) | Specification [56] |
---|---|---|---|---|---|
Specific gravity (g/cm3) | EN 1097-6 | 2.695 | 2.693 | 2.697 | – |
Water absorption (%) | EN 1097-6 | 0.32 | 0.44 | 0.33 | – |
Los Angeles value (%) | EN 1097-2 | 23.76 | – | – | ≤25 |
Micro-Deval value (%) | EN 1097-1 | 16.06 | – | – | ≤20 |
Friability coefficient (%) | NF P 18-576 | – | – | 32.77 | ≤35 |
Flakiness index (%) | EN 933-3 | 6.68 | 11.40 | – | ≤25 |
Surface cleanliness (%) | NF P 18-591 | 0.38 | 0.55 | – | ≤2 |
Sand equivalent (%) | EN 933-8 | – | – | 77.62 | ≥55 |
Methylene blue value | EN 933-9 | – | – | 0.35 | ≤2 |
Component | Result (%) |
---|---|
Na2O | 0.0290 |
MgO | 1.37 |
Al2O3 | 0.161 |
SiO2 | 0.283 |
P2O5 | 0.0101 |
SO3 | 0.136 |
K2O | 0.0213 |
CaCO3 | 97.3 |
Fe2O3 | 0.157 |
SrO | 0.0596 |
BaO | 0.463 |
Total | 100 |
Property | Standard | Result | Algerian Specification [56] |
---|---|---|---|
Penetration at 25 °C, 100 g, 5 s (1/10 mm) | EN 13880-2 | 38 | 35–50 |
Ring and ball softening point (°C) | EN 1427 | 51 | 47–60 |
Specific gravity at 25 °C (g/cm3) | NF T66-007 | 1.018 | 1.0–1.1 |
Component | BWP (%) | LS (%) |
---|---|---|
Na2O | 0.714 | 0.0335 |
MgO | 2.32 | 0.533 |
Al2O3 | 14.8 | 0.412 |
SiO2 | 54.8 | 1.05 |
P2O5 | 0.242 | 0.0073 |
SO3 | 0.439 | 0.0555 |
Cl | 0.0716 | – |
K2O | 1.90 | 0.106 |
CaO | 14.9 | – |
CaCO3 | - | 97.6 |
TiO2 | 0.902 | – |
V2O5 | 0.0488 | – |
Cr2O3 | 0.0296 | – |
MnO | 0.0929 | – |
Fe2O3 | 8.49 | 0.265 |
ZnO | 0.0189 | – |
As2O3 | 0.0057 | – |
Rb2O | 0.0090 | – |
SrO | 0.111 | 0.0253 |
ZrO2 | 0.0338 | – |
Total | 100 | 100 |
Property | Result |
---|---|
Color | White |
Length (mm) | 3 mm; 8 mm and 15 mm |
Diameter (µm) | 20 |
Aspect ratio | 150; 400 and 750 |
Specific gravity (g/cm3) | 1.36 ± 0.03 |
Tensile strength (MPa) | 369 ± 27 |
Elongation (%) | 39 ± 5.0 |
Melting point (°C) | 251 ± 5.0 |
Mix ID | Description of Mix Composition |
---|---|
ACLS | AC mix containing LS as conventional filler |
ACLSF3 | AC mix containing LS as conventional filler and PF with a length of 3 mm |
ACLSF8 | AC mix containing LS as conventional filler and PF with a length of 8 mm |
ACLSF15 | AC mix containing LS as conventional filler and PF with a length of 15 mm |
ACBWP | AC mix containing BWP as a replacement for conventional filler |
ACBWPF3 | AC mix containing BWP as a replacement for conventional filler and PF with a length of 3 mm |
ACBWPF8 | AC mix containing BWP as a replacement for conventional filler and PF with a length of 8 mm |
ACBWPF15 | AC mix containing BWP as a replacement for conventional filler and PF with a length of 15 mm |
Property | Specification [56] |
---|---|
Marshall stability (kN) | Min. 10.5 kN |
Va (%) | 3–5 |
Marshall flow (mm) | Max. 4 mm |
Indirect tensile strength ratio, ITSR (%) | Min. 75% |
Mix Type | Filler Name | Filler Type | PF Length (mm) |
---|---|---|---|
ACLS | Limestone powder (LS) | 1 | 0 |
ACLSF3 | 1 | 3 | |
ACLSF8 | 1 | 8 | |
ACLSF15 | 1 | 15 | |
ACBWP | Brick waste powder (BWP) | 2 | 0 |
ACBWPF3 | 2 | 3 | |
ACBWPF8 | 2 | 8 | |
ACBWPF15 | 2 | 15 |
Statistical Parameter | Equation | Definition |
---|---|---|
The squared sum (SSf) | SSf = | To estimate the deviation square from the overall average: : the average response, : mean of the measured responses for each level i of the F-factor, N denotes the total number of trials, : number of levels for each factor f. |
The squared mean (MSi) | The squared sum (SSi) divided by the number of degrees of freedom (dli) yields (MSi). | |
The F-value | Is used to check that the mathematical model is compatible, since the computed F-values must be greater than the tabulated F. MSe is the mean squared sum of the errors. | |
Contribution (Cont.%) | It shows the factors’ contribution (SSf) to the total variance (SST), indicating the degree of percent effect on response. | |
The coefficient of determination (R2) | R2 = | Goodness of fit is measured as the ratio of explained variation to total variation. |
Source | SSf | Df | MSi | F-Value | p-Value | Cont. % | Significant |
---|---|---|---|---|---|---|---|
Bulk density (g/cm3) | 0.0008 | 2 | 0.0004 | 34.13 | 0.0086 | ||
A-Filler type | 0.0004 | 1 | 0.0004 | 38.1 | 0.0086 | 50 | Yes |
B-PF length (mm) | 0.0003 | 1 | 0.0003 | 30.16 | 0.0119 | 37.5 | Yes |
Residual | 0 | 3 | 0 | ||||
Cor Total | 0.0008 | 5 | |||||
Va (%) | 0.5903 | 2 | 0.2952 | 15.62 | 0.0259 | ||
A-Filler type | 0.0193 | 1 | 0.0193 | 1.02 | 0.387 | 2.982998454 | No |
B-PF length (mm) | 0.571 | 1 | 0.571 | 30.22 | 0.0118 | 88.25347759 | Yes |
Residual | 0.0567 | 3 | 0.0189 | ||||
Cor Total | 0.647 | 5 | |||||
VMA (%) | 0.4361 | 2 | 0.2181 | 15.14 | 0.0271 | ||
A-Filler type | 0.0096 | 1 | 0.0096 | 0.6667 | 0.474 | 2.002920926 | No |
B-PF length (mm) | 0.4265 | 1 | 0.4265 | 29.62 | 0.0122 | 88.98393491 | Yes |
Residual | 0.0432 | 3 | 0.0144 | ||||
Cor Total | 0.4793 | 5 | |||||
VFA (%) | 10.07 | 2 | 5.04 | 15.16 | 0.027 | ||
A-Filler type | 0.96 | 1 | 0.96 | 2.89 | 0.1877 | 8.672086721 | No |
B-PF length (mm) | 9.11 | 1 | 9.11 | 27.43 | 0.0136 | 82.29448961 | Yes |
Residual | 0.9965 | 3 | 0.3322 | ||||
Cor Total | 11.07 | 5 | |||||
Marshall stability (kN) | 3.3 | 2 | 1.65 | 1.71 | 0.3187 | ||
A-Filler type | 0.546 | 1 | 0.546 | 0.5667 | 0.5063 | 8.806451613 | No |
B-PF length (mm) | 2.76 | 1 | 2.76 | 2.86 | 0.1892 | 44.51612903 | No |
Residual | 2.89 | 3 | 0.9635 | ||||
Cor Total | 6.2 | 5 | |||||
Marshall flow (mm) | 4.45 | 2 | 2.23 | 37.24 | 0.0076 | ||
A-Filler type | 0.6801 | 1 | 0.6801 | 11.38 | 0.0433 | 14.68898488 | Yes |
B-PF length (mm) | 3.77 | 1 | 3.77 | 63.09 | 0.0042 | 81.42548596 | Yes |
Residual | 0.1793 | 3 | 0.0598 | ||||
Cor Total | 4.63 | 5 | |||||
Marshall quotient (kN/mm) | 1.51 | 2 | 0.7557 | 57.93 | 0.004 | ||
A-Filler type | 0.0561 | 1 | 0.0561 | 4.3 | 0.1298 | 3.619354839 | No |
B-PF length (mm) | 1.46 | 1 | 1.46 | 111.57 | 0.0018 | 94.19354839 | Yes |
Residual | 0.0391 | 3 | 0.013 | ||||
Cor Total | 1.55 | 5 | |||||
ITS (kPa) | 96,944.5 | 2 | 48,472.25 | 5.27 | 0.1042 | ||
A-Filler type | 93,001.5 | 1 | 93,001.5 | 10.12 | 0.0501 | 74.4012 | Yes |
B-PF length (mm) | 3943 | 1 | 3943 | 0.429 | 0.5592 | 3.1544 | No |
Residual | 27,573 | 3 | 9191 | ||||
Cor Total | 1.25 × 105 | 5 | |||||
ITSw (kPa) | 77,015.15 | 2 | 38,507.58 | 9.87 | 0.0479 | ||
A-Filler type | 69,122.67 | 1 | 69,122.67 | 17.72 | 0.0245 | 77.91454754 | Yes |
B-PF length (mm) | 7892.48 | 1 | 7892.48 | 2.02 | 0.25 | 8.896343388 | No |
Residual | 11,700.85 | 3 | 3900.28 | ||||
Cor Total | 88716 | 5 | |||||
ITSR (%) | 18 | 2 | 9 | 0.8324 | 0.5157 | ||
A-Filler type | 13.8 | 1 | 13.8 | 1.28 | 0.3407 | 27.36466389 | No |
B-PF length (mm) | 4.2 | 1 | 4.2 | 0.3883 | 0.5774 | 8.328375967 | No |
Residual | 32.44 | 3 | 10.81 | ||||
Cor Total | 50.43 | 5 |
Parameters | Lower Limit | Upper Limit |
---|---|---|
Filler Name | LS | BWP |
PF length (mm) | 0 | 15 |
Parameters | Unit | Notation | Goal | Optimization Result | Desirability Value (D) | |
---|---|---|---|---|---|---|
Input Factors | Filler Type | / | A | Maximize | 2 | 0.718 (71.8%) |
PF length | mm | B | Target | 5 | ||
Responses (Output Factors) | Bulk density | g/cm3 | / | Maximize | 2.32992 | |
Vas | % | / | Minimize | 4.97694 | ||
Voids in mineral aggregate | % | VMA | Minimize | 18.0299 | ||
Voids filled with asphalt | % | VFA | Maximize | 69.4058 | ||
Marshall stability | kN | / | Maximize | 12.7528 | ||
Marshall flow | mm | / | Minimize | 4.82938 | ||
Marshall quotient | kN/mm | / | Maximize | 2.66429 | ||
Indirect tensile strength | kPa | ITS | Maximize | 1298.18 | ||
Indirect tensile strength of wet specimen | kPa | ITSw | Maximize | 1305.68 | ||
Indirect tensile strength ratio | % | ITSR | Maximize | 100.859 |
Parameters | Unit | Notation | Goal | Model Prediction | Laboratory Experiment | Absolute Error, % | Desirability Value (D) |
---|---|---|---|---|---|---|---|
Filler Type | / | A | Maximize | 2 | 2 | - | 0.718 (71.8%) |
PF length | mm | B | Target | 5 | 5 | - | |
Bulk density | g/cm3 | / | Maximize | 2.32992 | 2.21 | 5.43 | |
Vas | % | / | Minimize | 4.97694 | 4.65 | 7.03 | |
Voids in mineral aggregate | % | VMA | Minimize | 18.0299 | 17.89 | 0.78 | |
Voids filled with asphalt, | % | VFA | Maximize | 69.4058 | 68.77 | 0.92 | |
Marshall stability | kN | / | Maximize | 12.7528 | 12.23 | 4.27 | |
Marshall flow | mm | / | Minimize | 4.82938 | 4.53 | 6.61 | |
Marshall quotient | kN/mm | / | Maximize | 2.66429 | 2.56 | 4.07 | |
Indirect tensile strength | kPa | ITS | Maximize | 1298.18 | 1297.85 | 0.025 | |
Indirect tensile strength of wet specimen | kPa | ITSw | Maximize | 1305.68 | 1304.62 | 0.081 | |
Indirect tensile strength ratio | % | ITSR | Maximize | 100.859 | 100.52 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laib, S.; Nafa, Z.; Merdas, A.; Chetbani, Y.; Tayeh, B.A.; Tang, Y. Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance. Buildings 2025, 15, 2747. https://doi.org/10.3390/buildings15152747
Laib S, Nafa Z, Merdas A, Chetbani Y, Tayeh BA, Tang Y. Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance. Buildings. 2025; 15(15):2747. https://doi.org/10.3390/buildings15152747
Chicago/Turabian StyleLaib, Sara, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh, and Yunchao Tang. 2025. "Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance" Buildings 15, no. 15: 2747. https://doi.org/10.3390/buildings15152747
APA StyleLaib, S., Nafa, Z., Merdas, A., Chetbani, Y., Tayeh, B. A., & Tang, Y. (2025). Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance. Buildings, 15(15), 2747. https://doi.org/10.3390/buildings15152747