Sustainable Buildings and Cities: Integrated Research on Smart Strategies for Renewal and Resilience

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Architectural Design, Urban Science, and Real Estate".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1620

Special Issue Editor

School of Architecture, Harbin Institute of Technology, Harbin 150001, China
Interests: sustainable city; low-carbon building; energy efficiency; thermal comfort; residential settlement; overheating; bio-based material; phase change material
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Urbanization and climate urgency demand innovative synergies between architectural intelligence and systemic urban resilience. This Special Issue explores how smart technologies, heritage-sensitive approaches, and ecological principles can reshape built environments. We seek interdisciplinary research addressing the following topics:

Smart Renewal: AI-driven retrofits, circular construction, and digital twins for adaptive reuse.

Resilient Systems: Climate-responsive buildings, urban metabolic networks, and cross-scale governance.

Temporal Balance: Blockchain-enabled heritage conservation, community-centric digital tools for inclusive renewal.

Contributions may span the following:

  • Smart materials and self-healing building systems;
  • Data-integrated urban regeneration frameworks;
  • Low-carbon transitions in historic districts;
  • Participatory platforms bridging rural–urban synergies;
  • Policy innovations aligning building codes with smart city agendas.

We welcome multi-scale studies—from nanotechnology to regional planning—and methodologies including computational modeling, living labs, and socio-technical analyses. Submissions demonstrating actionable pathways where sustainability, technology, and cultural continuity co-evolve are particularly encouraged.

Shape the future of cities that remember, adapt, and thrive.

You may choose our Joint Special Issue in Urban Science.

Dr. Haibo Guo
Guest Editor

Bolun Zhao
Guest Editor Assistant
Affiliation: School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China
Interests: smart city; thermal comfort; residential building; sustainable city; energy efficiency; overheating; traditional settlement; computational design

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart buildings
  • smart cities
  • smart sensing
  • low-carbon
  • heritage conservation
  • infrastructure resilience
  • the Internet of Things
  • green building technologies
  • urban renewal
  • sustainable rural communities

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 18635 KiB  
Article
The Passive Optimization Design of Large- and Medium-Sized Gymnasiums in Hot Summer and Cold Winter Regions Oriented on Energy Saving: A Case Study of Shanghai
by Yuda Lyu, Ziyi Long, Ruifeng Zhou and Xu Gao
Buildings 2025, 15(15), 2745; https://doi.org/10.3390/buildings15152745 - 4 Aug 2025
Viewed by 140
Abstract
With the promotion of national fitness, the requirements for regulating indoor environments during non-competition periods are low and relatively flexible under the trend of composite sports buildings. To maximize the use of natural ventilation and lighting for energy savings, passive optimization design based [...] Read more.
With the promotion of national fitness, the requirements for regulating indoor environments during non-competition periods are low and relatively flexible under the trend of composite sports buildings. To maximize the use of natural ventilation and lighting for energy savings, passive optimization design based on building ontology has emerged as an effective strategy. This paper focuses on the spatial prototype of large- and medium-sized gymnasiums, optimizing key geometric design parameters and envelope structure parameters that influence energy consumption. This optimization employs a combination of orthogonal experiments and performance simulations. This study identifies the degree to which each factor affects energy consumption in the competition hall and determines the optimal low-energy consumption gymnasium prototype. The results reveal that the skylight area ratio is the most significant factor impacting the energy consumption of large- and medium-sized gymnasiums. The optimized gymnasium prototype reduced energy consumption by 5.3%~50.9% compared to all experimental combinations. This study provides valuable references and insights for architects during the initial stages of designing sports buildings to achieve low energy consumption. Full article
Show Figures

Figure 1

36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 384
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

22 pages, 31625 KiB  
Article
The Construction and Analysis of a Spatial Gene Map of Marginal Villages in Southern Sichuan
by Jiahao Wan, Xiaoyang Guo, Zehua Wen and Xujun Zhang
Buildings 2025, 15(15), 2628; https://doi.org/10.3390/buildings15152628 - 24 Jul 2025
Viewed by 370
Abstract
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study [...] Read more.
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study takes Xuyong County in Luzhou City as a case and develops a three-tier analytical framework—“genome–spatial factors–specific indicators”—based on the space gene theory to identify, classify, and map spatial patterns in marginal villages of southern Sichuan. Through cluster analysis, common and distinctive spatial genes are extracted. Common genes—such as medium surface roughness (GeneN-2-b), medium building dispersion (GeneA-3-b), and low intelligibility (GeneT-2-b)—are prevalent across multiple village types, reflecting shared adaptive strategies to complex terrains, ecological constraints, and historical development. In contrast, distinctive genes—such as high building dispersion (GeneA-3-a) and linear boundaries (GeneB-1-c)—highlight unique spatial responses that are shaped by local cultural and environmental conditions. The results contribute to a deeper understanding of spatial morphology and adaptive mechanisms in rural settlements. This research offers a theoretical and methodological basis for village classification, conservation zoning, and spatial optimization, providing practical guidance for rural revitalization efforts focusing on both development and heritage protection. Full article
Show Figures

Figure 1

36 pages, 10209 KiB  
Article
Climate Adaptation of Folk House Envelopes in Xinjiang Arid Region: Evaluation and Multi-Objective Optimization from Historical to Future Climates
by Nurimaimaiti Tuluxun, Saierjiang Halike, Hao Liu, Buerlan Yelaixi and Kapulanbayi Ailaitijiang
Buildings 2025, 15(8), 1240; https://doi.org/10.3390/buildings15081240 - 9 Apr 2025
Viewed by 494
Abstract
Under intensifying global warming and extreme climate events, the climate adaptability of folk houses in Xinjiang’s arid regions faces critical challenges. However, existing studies predominantly focus on traditional folk houses under current climate conditions, neglecting modern material hybrids and long-term performance under future [...] Read more.
Under intensifying global warming and extreme climate events, the climate adaptability of folk houses in Xinjiang’s arid regions faces critical challenges. However, existing studies predominantly focus on traditional folk houses under current climate conditions, neglecting modern material hybrids and long-term performance under future warming scenarios. This study develops a data-driven framework to assess and enhance building envelope performance across historical-to-future climate conditions (2007–2021 TMY data, 2024 observations, and 2050/2080 SSP3–7.0 projections) using the entropy-weighted TOPSIS method and NSGA-II algorithm. Analyzing rammed earth, brick–wood, and brick–concrete folk houses in Kashgar, Hotan, Kuqa, and Turpan, the optimization targets thermal discomfort hours (TDHs), heating energy consumption (HEC), and net present value (NPV). The results demonstrate optimized solutions achieve 30–60 year climate resilience, reducing HEC by 51.54–84.76% (43.02–125.78 kW·h/m2·a) compared to baseline buildings, TDH by 15–52.93% (301–1236 h) in arid Zone A and by 5.54–10.8% (208–352 h) in the extreme hot-arid Zone B (Turpan), and NPV values by CNY 31,000–85,000. Rammed earth constructions demonstrate superior performance in Zone A, while brick–concrete exhibits optimal extreme hot-arid adaptability, and brick–wood requires prioritized retrofitting. The findings advocate revising China’s design standards to address concurrent winter overcooling and summer overheating risks under future warming. This work establishes a climate-resilient optimization paradigm for arid-region folk houses, advancing energy efficiency and thermal comfort. Full article
Show Figures

Figure 1

Back to TopTop