Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,911)

Search Parameters:
Keywords = color temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1959 KiB  
Article
Influence of Molecular Weight of Anthraquinone Acid Dyes on Color Strength, Migration, and UV Protection of Polyamide 6 Fabrics
by Nawshin Farzana, Abu Naser Md Ahsanul Haque, Shamima Akter Smriti, Abu Sadat Muhammad Sayem, Fahmida Siddiqa, Md Azharul Islam, Md Nasim and S M Kamrul Hasan
Physchem 2025, 5(3), 31; https://doi.org/10.3390/physchem5030031 - 4 Aug 2025
Abstract
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers [...] Read more.
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers comparative insight into how the Mw of structurally similar anthraquinone acid dyes impacts their diffusion, fixation, and functional outcomes (e.g., UV protection) on polyamide 6 fabric, using Acid Blue 260 (Mw~564) and Acid Blue 127:1 (Mw~845) as representative low- and high-Mw dyes. The effects of dye concentration, pH, and temperature on color strength (K/S) were evaluated, migration index and zeta potential were measured, and UV protection factor (UPF) and FTIR analyses were used to assess fabric functionality. Results showed that the lower-Mw dye exhibited higher migration tendency, particularly at increased dye concentrations, while the higher-Mw dye demonstrated greater color strength and superior wash fastness. Additionally, improved UPF ratings were associated with higher-Mw dye due to enhanced light absorption. These findings offer practical insights for optimizing acid dye selection in polyamide coloration to balance color performance and functional attributes. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 - 3 Aug 2025
Viewed by 98
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel
by John Karagiorgos, Platon Patlakas, Vassilios Vervatis and Sarantis Sofianos
Remote Sens. 2025, 17(15), 2684; https://doi.org/10.3390/rs17152684 - 3 Aug 2025
Viewed by 60
Abstract
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. [...] Read more.
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. Using a regional coupled ocean–wave–atmosphere model, we conducted sensitivity experiments for Storm Daniel (2023) comparing two solar radiation penetration schemes in the ocean model component: one with a constant light attenuation depth and another with chlorophyll-dependent attenuation based on satellite estimates. Results show that the chlorophyll-driven radiative heating scheme consistently produces warmer sea surface temperatures (SSTs) prior to cyclone onset, leading to stronger cyclones characterized by deeper minimum mean sea-level pressure, intensified convective activity, and increased rainfall. However, post-storm SST cooling is also amplified due to stronger wind stress and vertical mixing, potentially influencing subsequent local atmospheric conditions. Overall, this work demonstrates that ocean bio-optical processes can meaningfully impact Mediterranean cyclone behavior, highlighting the importance of using appropriate underwater light attenuation schemes and ocean color remote sensing data in coupled models. Full article
Show Figures

Figure 1

37 pages, 9843 KiB  
Article
Soy Sauce Fermentation with Cordyceps militaris: Process Optimization and Functional Profiling
by Wanying Song, Xinyue Zhang, Huiyi Yang, Hanyu Liu and Baodong Wei
Foods 2025, 14(15), 2711; https://doi.org/10.3390/foods14152711 - 1 Aug 2025
Viewed by 205
Abstract
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to [...] Read more.
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to improve both nutritional and functional properties. Response surface methodology was employed to optimize the entire fermentation process. During the koji stage, temperature, aeration, and inoculum concentration were adjusted to maximize protease activity and cordycepin production. In the fermentation stage, temperature, brine concentration, and water-to-material ratio were optimized to increase amino acid nitrogen and bioactive compound levels. Under optimal conditions (24 °C, 679.60 LPM aeration, 9.6% inoculum for koji; 32 °C, 12% brine, 1.53:1 water-to-material ratio for fermentation), the resulting soy sauce contained 1.14 ± 0.05 g/100 mL amino acid nitrogen and 16.88 ± 0.47 mg/100 mL cordycepin. Compared with traditionally fermented soy sauce, the C. militaris product exhibited a darker color, enhanced umami taste, and a distinct volatile profile featuring linoleic acid, methyl palmitate, and niacinamide. These results demonstrate the feasibility of using C. militaris in soy sauce fermentation and its potential as a novel functional condiment with improved bioactivity and sensory quality. Full article
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 126
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

18 pages, 2433 KiB  
Article
Effect of Preharvest Aluminum-Coated Paper Bagging on Postharvest Quality, Storability, and Browning Behavior of ‘Afrata Volou’ Quince
by Triantafyllia Georgoudaki, Persefoni Maletsika and George D. Nanos
Horticulturae 2025, 11(8), 881; https://doi.org/10.3390/horticulturae11080881 - 30 Jul 2025
Viewed by 278
Abstract
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest [...] Read more.
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest bagging using paper bags with inner aluminum coating on the physicochemical traits, storability, and browning susceptibility after cutting or bruising of ‘Afrata Volou’ quince (Cydonia oblonga Mill.) fruit grown in central Greece. Fruits were either bagged or left unbagged approximately 60 days before harvest, and evaluations were conducted at harvest and after three months of cold storage, plus two days of shelf-life. Fruit bagging reduced the quince’s flesh temperature on the tree crown. Bagging had minor effects on fruit and nutritional quality, except for more yellow skin and higher titratable acidity (TA). Also, at harvest, bagging did not significantly affect fruit flesh browning after cutting or bruising. After three months of storage, unbagged and bagged quince fruit developed more yellow skin color, without significant alterations in most quality characteristics and nutritional value, but increased total tannin content (TTC). After three months of storage, the quince flesh color determined immediately after cutting or bruising was brighter and more yellowish compared to that at harvest, due to continuation of fruit ripening, but it darkened faster with time after cutting or skin removal. Therefore, fruit bagging appears to be a sustainable practice for improving the aesthetic and some chemical quality characteristics of quince, particularly after storage, without negative impacts on other characteristics such as texture and phenolic content. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 297
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

12 pages, 2191 KiB  
Article
A Structural Colored Epoxy Resin Sensor for the Discrimination of Methanol and Ethanol
by Yongxing Guo, Yingying Yi, Limin Wu, Wei Liu, Yi Li and Yonggang Yang
Chemistry 2025, 7(4), 122; https://doi.org/10.3390/chemistry7040122 - 30 Jul 2025
Viewed by 184
Abstract
A thermochromic cholesteric liquid crystal (CLC) mixture was prepared using epoxies. The structural color of the CLCN film was tuned by changing the concentration of a chiral dopant and the polymerization temperature. It was found the yellow CLCN film can be used as [...] Read more.
A thermochromic cholesteric liquid crystal (CLC) mixture was prepared using epoxies. The structural color of the CLCN film was tuned by changing the concentration of a chiral dopant and the polymerization temperature. It was found the yellow CLCN film can be used as a sensor for the discrimination of methanol and ethanol which was proposed to be driven by the difference between the solubility parameters. Moreover, a colorful pattern was prepared based on the thermochromic property of the CLC mixture, which could be applied for decoration and as a sensor for chloroform. Full article
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 326
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

13 pages, 5624 KiB  
Article
Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
by Elena Blundo, Niklas H. T. Schmidt, Andreas V. Stier and Jonathan J. Finley
Appl. Sci. 2025, 15(15), 8400; https://doi.org/10.3390/app15158400 - 29 Jul 2025
Viewed by 193
Abstract
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat [...] Read more.
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat tunnel barriers, and it can be used to form high finesse photonic nanocavities. Moreover, it is an ideal encapsulating dielectric for two-dimensional (2D) materials and heterostructures, with highly beneficial effects on their electronic and optical properties. Depending on the use case, the thickness of hBN is a critical parameter and needs to be carefully controlled from the monolayer to hundreds of layers. This calls for quick and non-invasive methods to unambiguously identify the thickness of exfoliated flakes. Here, we show that the apparent color of hBN flakes on different SiO2/Si substrates can be made to be highly indicative of the flake thickness, providing a simple method to infer the hBN thickness. Using experimental determination of the colour of hBN flakes and calculating the optical contrast, we derived the optimal substrates for the most reliable hBN thickness identification for flakes with thickness ranging from a few layers towards bulk-like hBN. Our results offer a practical guide for the determination of hBN flake thickness for widespread applications using 2D materials and heterostructures. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

13 pages, 1425 KiB  
Article
Psychology or Physiology? Choosing the Right Color for Interior Spaces to Support Occupants’ Healthy Circadian Rhythm at Night
by Mansoureh Sadat Jalali, Ronald B. Gibbons and James R. Jones
Buildings 2025, 15(15), 2665; https://doi.org/10.3390/buildings15152665 - 28 Jul 2025
Viewed by 289
Abstract
The human circadian rhythm is connected to the body’s endogenous clock and can influence people’s natural sleeping habits as well as a variety of other biological functions. According to research, various electric light sources in interior locations can disrupt the human circadian rhythm. [...] Read more.
The human circadian rhythm is connected to the body’s endogenous clock and can influence people’s natural sleeping habits as well as a variety of other biological functions. According to research, various electric light sources in interior locations can disrupt the human circadian rhythm. Many psychological studies, on the other hand, reveal that different colors can have varied connections with and a variety of effects on people’s emotions. In this study, the effects of light source attributes and interior space paint color on human circadian rhythm were studied using 24 distinct computer simulations. Simulations were performed using the ALFA plugin for Rhinoceros 6 on an unfurnished bedroom 3D model at night. Results suggest that cooler hues, such as blue, appear to have an unfavorable effect on human circadian rhythm at night, especially when utilized in spaces that are used in the evening, which contradicts what psychologists and interior designers advocate in terms of the soothing mood and nature of the color. Furthermore, the effects of Correlated Color Temperature (CCT) and the intensity of a light source might be significant in minimizing melanopic lux to prevent melatonin suppression at night. These insights are significant for interior designers, architects, and lighting professionals aiming to create healthier living environments by carefully selecting lighting and color schemes that support circadian health. Incorporating these considerations into design practices can help mitigate adverse effects on sleep and overall well-being, ultimately contributing to improved occupant comfort and health. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 2412 KiB  
Article
Postharvest Application of Myo-Inositol Extends the Shelf-Life of Banana Fruit by Delaying Ethylene Biosynthesis and Improving Antioxidant Activity
by Lingyu Hu, Yi Li, Kun Zhou, Kaili Shi, Yi Niu, Feng Qu, Shenglin Zhang, Weidi He and Yuanli Wu
Foods 2025, 14(15), 2638; https://doi.org/10.3390/foods14152638 - 28 Jul 2025
Viewed by 312
Abstract
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana [...] Read more.
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana remains to be determined. This study found that postharvest application of MI could efficiently delay the fruit ripening and extend the time in which the luster, color, and hardness were maintained in two cultivars with contrasting storage characteristics, storable ‘Brazil’ and unstorable ‘Fenza No. 1’, when stored at room temperature (23 °C ± 2 °C). Moreover, physiological, metabolic, and gene expression analyses indicated that MI application improved MI metabolism and postponed ethylene biosynthesis and cell wall loosening. The decrease in ethylene production was associated with a reduction in the expression of ACS1 and ACO1 genes. MI treatment decreased the expressions of PL1/2, PG, and EXP1/7/8, which may account for the delay in softening. In addition, the application of MI could alleviate ROS-mediated senescence and cell membrane damage by promoting the activities of SOD, POD, and anti-O2 and decreasing PPO activity. This study shed light on the function of MI in regulating the postharvest ripening and senescence of bananas and provided an efficient strategy for extending shelf-life and reduce losses. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

23 pages, 2215 KiB  
Article
Improving Dehydration Efficiency and Quality in Highbush Blueberries via Combined Pulsed Microwave Pretreatment and Osmotic Dehydration
by Shokoofeh Norouzi, Valérie Orsat and Marie-Josée Dumont
Agriculture 2025, 15(15), 1602; https://doi.org/10.3390/agriculture15151602 - 25 Jul 2025
Viewed by 317
Abstract
The impact of processing time, temperature, and sample on solution ratio parameters, along with pulsing microwave pretreatment, was assessed in the osmotic dehydration of waxy skin highbush blueberries. Fresh blueberries were pre-treated with 20% microwave power for 90 s before being subjected to [...] Read more.
The impact of processing time, temperature, and sample on solution ratio parameters, along with pulsing microwave pretreatment, was assessed in the osmotic dehydration of waxy skin highbush blueberries. Fresh blueberries were pre-treated with 20% microwave power for 90 s before being subjected to osmotic dehydration for 8 h in a 60 °Brix sucrose solution, with three different sample to solution ratios (1:4, 1:7, and 1:10). Changes in water loss, solid gain, total anthocyanin content, total phenolic content, and total soluble solid content during osmotic dehydration, as well as color and texture changes, were investigated at four temperature levels (room temperature, 60 °C, 65 °C, and 70 °C). The highest rate of reduction in the total soluble solid content in the osmotic solution was observed during the initial hours (0–4 h) of the process. The most effective combination for reducing the total soluble content of the osmotic agent involved the microwave-pretreatment of the blueberries at 70 °C, using a sample to solution ratio of 1:4, resulting in a decrease of 11.98%, compared to 7.83% for non-pretreated samples. The solid gain was found to be affected by the sample to solution ratio × temperature × pretreatment at a 1% probability level (p ≤ 0.01). The temperature, osmotic solution ratio, and microwave pretreatment interacted together to affect the quality parameters of the osmotically dehydrated blueberries, including total anthocyanin content, total phenolic content, and color. Higher temperatures, along with microwave pretreatment, showed the worst effects on the quality characteristics mentioned. Microwave pretreatment did not change the texture significantly in comparison with non-pretreated blueberry samples. The enhancing effect of microwave pretreatment and higher temperatures on the efficiency of the osmotic dehydration process was obvious. An optimized microwave pretreatment can reduce both the required processing time and temperature for the osmotic dehydration of waxy skinned blueberries, which in turn can lead to the higher quality preservation of processed blueberries and lower energy consumption. This could be especially useful for the large-scale processing of waxy skinned berries. Full article
Show Figures

Figure 1

24 pages, 4710 KiB  
Article
Preparation of Tung Oil Microcapsules Coated with Chitosan Sodium Tripolyphosphate and Their Effects on Coating Film Properties
by Yang Dong, Jinzhe Deng and Xiaoxing Yan
Coatings 2025, 15(8), 867; https://doi.org/10.3390/coatings15080867 - 23 Jul 2025
Viewed by 309
Abstract
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. [...] Read more.
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. Orthogonal testing determined the following optimal parameters: a core-to-wall ratio of 2.0:1.0, a T-80/SDBS ratio of 4.0:6.0 (HLB = 12.383), an STPP concentration of 4%, and a spray-drying temperature of 120 °C. With these parameters, a yield of 42.91% and coating rate of 68.50% were achieved. The microcapsules were spherical (1–6 μm), with chitosan–STPP electrostatic interactions forming a dense wall. Adding 5% microcapsules to the UV topcoat enabled self-healing after 60 s UV curing: the scratch-healing rate reached 25.25% (width decreased from 11.13 μm to 8.32 μm), the elongation at break increased by 110% to 9.31%, the light transmission remained >82.50%, and the color difference (ΔE = 2.16) showed no significant change versus unmodified coating. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

20 pages, 1446 KiB  
Article
Astaxanthin from Shrimp By-Products Enhances Oxidative Stability of Lard During Storage
by Olga Draghici
Foods 2025, 14(15), 2585; https://doi.org/10.3390/foods14152585 - 23 Jul 2025
Viewed by 243
Abstract
Previous research has primarily focused on the antioxidant effect of astaxanthin (AX) in various vegetable oils, with limited attention given to its behavior in lard. This study aimed to evaluate the degradation of AX during lard storage and to assess the physicochemical changes [...] Read more.
Previous research has primarily focused on the antioxidant effect of astaxanthin (AX) in various vegetable oils, with limited attention given to its behavior in lard. This study aimed to evaluate the degradation of AX during lard storage and to assess the physicochemical changes occurring in lard containing different AX concentrations over time. The variation in AX concentration was monitored using spectrophotometric analysis. To characterize the changes in lard, both thermal and chemical methods were employed: thermal analysis was used to determine the onset oxidation temperature (To) and activation energy (Ea), while chemical methods included peroxide value (PV) and thiobarbituric acid reactive substance (TBA) assays. Optimization of AX concentration and temporal evaluation of its antioxidant effect were performed using Response Surface Methodology (RSM). The results indicated a significant degradation of AX after 30 days of storage. An AX concentration of approximately 3 mg/g was identified as optimal, as it provided the highest thermal stability and the lowest levels of oxidation markers, offering a well-balanced compromise between technological performance and preservative effectiveness in lard during storage. Additionally, the color of the lard was found to be more strongly influenced by the presence of AX itself rather than by its specific concentration. Full article
Show Figures

Figure 1

Back to TopTop