Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = color grading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1993 KiB  
Article
Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface
by Yang Dong, Jinzhe Deng and Xiaoxing Yan
Coatings 2025, 15(8), 873; https://doi.org/10.3390/coatings15080873 - 25 Jul 2025
Viewed by 359
Abstract
This study enhanced the self-healing performance of cherry wood furniture coatings by incorporating chitosan gum arabic-coated tung oil (CGA-T) microcapsules (types 1 and 2) into UV topcoats at 3%–15% concentrations. Multi-layer coated samples were systematically evaluated for optical, mechanical, and self-healing properties. Results [...] Read more.
This study enhanced the self-healing performance of cherry wood furniture coatings by incorporating chitosan gum arabic-coated tung oil (CGA-T) microcapsules (types 1 and 2) into UV topcoats at 3%–15% concentrations. Multi-layer coated samples were systematically evaluated for optical, mechanical, and self-healing properties. Results demonstrated that microcapsules conferred self-healing ability, but concentrations >9% reduced reflectance (min 39.20%), increased color difference (max ΔE = 8.35), decreased gloss (max 35.25% loss at 60°), and raised roughness (max 1.79 μm). Mechanically, impact resistance improved (to grade 3), while adhesion declined (to grade 3) and hardness decreased (4H→2H). Self-healing performance peaked at 9% microcapsule 2 content (31.32% healing rate), with optimal overall performance at 6%. The 6% microcapsule 2 formulation (Sample 7) achieved the best overall balance among optical, mechanical, and self-healing properties, demonstrating its suitability for practical applications. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

17 pages, 2629 KiB  
Article
Recovery of High-Alkali-Grade Feldspar Substitute from Phonolite Tailings
by Savas Ozun, Semsettin Ulutas and Sema Yurdakul
Processes 2025, 13(8), 2334; https://doi.org/10.3390/pr13082334 - 23 Jul 2025
Viewed by 267
Abstract
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% [...] Read more.
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% of the rock is discarded as tailing. So, this study aims to repurpose tailings from a phonolite cutting and sizing plant into a high-alkali ceramic raw mineral concentrate. To enable the use of phonolite tailings in ceramic manufacturing, it is necessary to remove coloring iron/titanium-bearing minerals, which negatively affect the final product. To achieve this removal, dry/wet magnetic separation processes, along with flotation, were employed both individually and in combination. The results demonstrated that using dry high-intensity magnetic separation (DHIMS) resulted in a concentrate with an Fe2O3 + TiO2 grade of 0.95% and a removal efficiency of 85%. The wet high-intensity magnetic separation (WHIMS) process reduced the Fe2O3 + TiO2 grade of the concentrate to 1.2%, with 70% removal efficiency. During flotation tests, both pH levels and collector concentration impacted the efficiency and Fe2O3 + TiO2 grade (%) of the concentrate. The lowest Fe2O3 + TiO2 grade of 1.65% was achieved at a pH level of 10 with a collector concentration of 2000 g/t. Flotation concentrates processed with DHIMS achieved a minimum Fe2O3 + TiO2 grade of 0.90%, while those processed with WHIMS exhibited higher Fe2O3 + TiO2 grades (>1.1%) and higher recovery rates (80%). Additionally, studies on flotation applied to WHIMS concentrates showed that collector concentration, pulp density, and conditioning time significantly influenced the Fe2O3 + TiO2 grade of the final concentrate. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

31 pages, 15881 KiB  
Article
Fused Space in Architecture via Multi-Material 3D Printing Using Recycled Plastic: Design, Fabrication, and Application
by Jiangjing Mao, Lawrence Hsu and Mai Altheeb
Buildings 2025, 15(15), 2588; https://doi.org/10.3390/buildings15152588 - 22 Jul 2025
Viewed by 357
Abstract
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor [...] Read more.
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor to ecological imbalance, this research on fused space aims to recycle plastic and use it as a multi-material for building applications, due to its capacity for being 3D printed and fused with other materials. Furthermore, to generate diverse properties for the fused space, several nature-inspired forming algorithms are employed, including Swarm Behavior, Voronoi, Game of Life, and Shortest Path, to shape the building enclosure. Subsequently, digital analyses, such as daylight analysis, structural analysis, porosity analysis, and openness analysis, are conducted on the enclosure, forming the color mapping digital diagram, which determines the distribution of varying thickness, density, transparency, and flexibility gradation parameters, resulting in spatial diversity. During the fabrication process, Dual Force V1 and Dual Force V2 were developed to successfully print multi-material gradations with fused plastic following an upgrade to the cooling system. Finally, three test sites in London were chosen to implement the fused space concept using multi-material. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 3299 KiB  
Article
Corrosion Stability and Biological Activity of Anodized cpTi for Dental Application
by Aleksandra S. Popović, Minja Miličić Lazić, Dijana Mitić, Lazar Rakočević, Dragana Jugović, Predrag Živković and Branimir N. Grgur
Metals 2025, 15(7), 817; https://doi.org/10.3390/met15070817 - 21 Jul 2025
Viewed by 378
Abstract
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on [...] Read more.
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on polished, cleaned cpTi sheet samples in 1 M H2SO4 using a constant voltage of 15 V for 15 and 45 min. The color of the oxide layer is evaluated using the CIELab color space, while composition is analyzed by a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Additionally, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to identify and monitor the phase transformations of the formed titanium oxides. Corrosion measurements are performed in 9 g L−1 NaCl, pH = 7.4, and show the excellent corrosion stability of the anodized samples in comparison with pure titanium. The biological response is assessed by determining mitochondrial activity and gene expression in human fibroblasts. Anodized surfaces, particularly Ti-45, promote higher mitochondrial activity and the upregulation of adhesion-related genes (N-cadherin and Vimentin) in human gingival fibroblasts, indicating improved biocompatibility and the potential for enhanced early soft tissue integration. Full article
Show Figures

Graphical abstract

12 pages, 2353 KiB  
Article
Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1
by Eleonora Riotto, Wei-Shan Tsai, Hagar Khalid, Francesca Lamanna, Louise Roch, Medha Manoj and Sobha Sivaprasad
Diagnostics 2025, 15(14), 1831; https://doi.org/10.3390/diagnostics15141831 - 21 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Discrepancies in diabetic retinopathy (DR) grading are well-documented, with retinal non-perfusion (RNP) quantification posing greater challenges. This study assessed intergrader agreement in DR evaluation, focusing on qualitative severity grading and quantitative RNP measurement. We aimed to improve agreement through structured consensus [...] Read more.
Background/Objectives: Discrepancies in diabetic retinopathy (DR) grading are well-documented, with retinal non-perfusion (RNP) quantification posing greater challenges. This study assessed intergrader agreement in DR evaluation, focusing on qualitative severity grading and quantitative RNP measurement. We aimed to improve agreement through structured consensus meetings. Methods: A retrospective analysis of 100 comparisons from 50 eyes (36 patients) was conducted. Two paired medical retina fellows graded ultra-widefield color fundus photographs (CFP) and fundus fluorescein angiography (FFA) images. CFP assessments included DR severity using the International Clinical Diabetic Retinopathy (ICDR) grading system, DR Severity Scale (DRSS), and predominantly peripheral lesions (PPL). FFA-based RNP was defined as capillary loss with grayscale matching the foveal avascular zone. Weekly adjudication by a senior specialist resolved discrepancies. Intergrader agreement was evaluated using Cohen’s kappa (qualitative DRSS) and intraclass correlation coefficients (ICC) (quantitative RNP). Bland–Altman analysis assessed bias and variability. Results: After eight consensus meetings, CFP grading agreement improved to excellent: kappa = 91% (ICDR DR severity), 89% (DRSS), and 89% (PPL). FFA-based PPL agreement reached 100%. For RNP, the non-perfusion index (NPI) showed moderate overall ICC (0.49), with regional ICCs ranging from 0.40 to 0.57 (highest in the nasal region, ICC = 0.57). Bland–Altman analysis revealed a mean NPI difference of 0.12 (limits: −0.11 to 0.35), indicating acceptable variability despite outliers. Conclusions: Structured consensus training achieved excellent intergrader agreement for DR severity and PPL grading, supporting the clinical reliability of ultra-widefield imaging. However, RNP measurement variability underscores the need for standardized protocols and automated tools to enhance reproducibility. This process is critical for developing robust AI-based screening systems. Full article
(This article belongs to the Special Issue New Advances in Retinal Imaging)
Show Figures

Figure 1

29 pages, 10358 KiB  
Article
Smartphone-Based Sensing System for Identifying Artificially Marbled Beef Using Texture and Color Analysis to Enhance Food Safety
by Hong-Dar Lin, Yi-Ting Hsieh and Chou-Hsien Lin
Sensors 2025, 25(14), 4440; https://doi.org/10.3390/s25144440 - 16 Jul 2025
Viewed by 288
Abstract
Beef fat injection technology, used to enhance the perceived quality of lower-grade meat, often results in artificially marbled beef that mimics the visual traits of Wagyu, characterized by dense fat distribution. This practice, driven by the high cost of Wagyu and the affordability [...] Read more.
Beef fat injection technology, used to enhance the perceived quality of lower-grade meat, often results in artificially marbled beef that mimics the visual traits of Wagyu, characterized by dense fat distribution. This practice, driven by the high cost of Wagyu and the affordability of fat-injected beef, has led to the proliferation of mislabeled “Wagyu-grade” products sold at premium prices, posing potential food safety risks such as allergen exposure or consumption of unverified additives, which can adversely affect consumer health. Addressing this, this study introduces a smart sensing system integrated with handheld mobile devices, enabling consumers to capture beef images during purchase for real-time health-focused assessment. The system analyzes surface texture and color, transmitting data to a server for classification to determine if the beef is artificially marbled, thus supporting informed dietary choices and reducing health risks. Images are processed by applying a region of interest (ROI) mask to remove background noise, followed by partitioning into grid blocks. Local binary pattern (LBP) texture features and RGB color features are extracted from these blocks to characterize surface properties of three beef types (Wagyu, regular, and fat-injected). A support vector machine (SVM) model classifies the blocks, with the final image classification determined via majority voting. Experimental results reveal that the system achieves a recall rate of 95.00% for fat-injected beef, a misjudgment rate of 1.67% for non-fat-injected beef, a correct classification rate (CR) of 93.89%, and an F1-score of 95.80%, demonstrating its potential as a human-centered healthcare tool for ensuring food safety and transparency. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 3012 KiB  
Article
Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
by İsmet Onur Ünal, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal and Nergizhan Anaç
Polymers 2025, 17(14), 1902; https://doi.org/10.3390/polym17141902 - 9 Jul 2025
Viewed by 463
Abstract
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics [...] Read more.
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics produced by 3D printing have gained prominence in applications traditionally dominated by conventional plastic materials. Therefore, producing marine-grade materials—such as acrylonitrile butadiene styrene (ABS), which has long been used in the maritime sector—through 3D printing, and understanding their long-term performance, has become increasingly important. In this study, the mechanical behavior, surface roughness, and color changes of ABS+ materials in three different colors (yellow, green, and blue) and with three different infill ratios (50%, 75%, and 100%) were investigated after a salt spray test. Following the salt spray exposure, tensile and bending tests, hardness measurements, surface roughness analyses, and color measurements were conducted and compared with reference samples. The results were evaluated based on filament color and infill ratio. This study underscores the importance of color selection—along with mechanical strength—when designing 3D-printed materials for long-term use in saltwater environments. Full article
(This article belongs to the Special Issue Polymer Processing: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

19 pages, 6125 KiB  
Article
Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds
by Chenxu Zhao, Junpeng Niu, Wei Wang, Yebo Wang, Linlin Cheng, Yonghong Meng, Yurong Guo and Shujie Song
Foods 2025, 14(13), 2322; https://doi.org/10.3390/foods14132322 - 30 Jun 2025
Viewed by 372
Abstract
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored [...] Read more.
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored at −20 °C for 0, 3, 6, 9, and 12 months as the research materials, the dynamic changes in the phenotype, color, antioxidant activity, and flavor compounds were comprehensively evaluated. The results showed that frozen storage caused a significant decline in the quality of the fruit pulp. Specifically, the contents of chlorophyll and carotenoids decreased and the color deteriorated (color difference increased); the turbidity and centrifugal sedimentation rates increased, and pH and viscosity changed in different stages. Additionally, antioxidant compounds, such as vitamin C and total phenols, were significantly reduced with the extension of storage duration, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability was decreased. The content of volatile aroma compounds diminished, leading to a notable shift in the flavor profile. Correlation analysis revealed that changes in volatile substances were significantly correlated with physical, chemical, and antioxidant indicators (p < 0.05). These correlations can serve as a key basis for assessing quality deterioration. This study systematically elucidated, for the first time, the mechanism of quality deterioration in kiwifruit pulp during frozen storage, thereby providing theoretical support for enterprises to optimize pulp grading strategies and the timing of by-product development. Hence, it is recommended that the duration of freezing should be limited to less than 9 months for kiwifruit pulp. Moreover, it is essential to consider varietal differences and new pretreatment technologies to further enhance the industrial utilization and economic value of frozen pulp. Full article
Show Figures

Figure 1

13 pages, 2471 KiB  
Article
Portable and Rapid Smartphone-Based Colorimetric Assay of Peracetic Acid for Point-of-Use Medical/Pharmaceutical Disinfectant Preparation
by Suphakorn Katib, Sutasinee Apichai, Jutamas Jiaranaikulwanitch, Busaban Sirithunyalug, Fumihiko Ogata, Naohito Kawasaki, Kate Grudpan and Chalermpong Saenjum
Molecules 2025, 30(13), 2798; https://doi.org/10.3390/molecules30132798 - 28 Jun 2025
Viewed by 383
Abstract
A simple and rapid smartphone-based colorimetric assay for peracetic acid concentration was developed to facilitate point-of-use disinfectant preparations for infection prevention and control. The colorimetric detection was based on the oxidation of N,N-diethyl-phenylenediamine by peracetic acid through an intermediate reaction with potassium iodide, [...] Read more.
A simple and rapid smartphone-based colorimetric assay for peracetic acid concentration was developed to facilitate point-of-use disinfectant preparations for infection prevention and control. The colorimetric detection was based on the oxidation of N,N-diethyl-phenylenediamine by peracetic acid through an intermediate reaction with potassium iodide, resulting in pink-magenta products. The colorimetric reaction was performed on a 96-well plate; then, the color products were photographed in one image. The color intensity was evaluated to determine the peracetic acid concentration using a custom-built mobile application named Modern Peracetic Acid Analysis. The relative green intensity of the pink-magenta products was directly proportional to the peracetic acid concentration in the range of 0.15 to 3.0 µg/mL. The detection and quantitation limits were 0.11 µg/mL and 0.34 µg/mL, respectively. The approach was successfully applied to determine the peracetic acid concentration in pharmaceutical disinfectant formulations. The results obtained using the proposed approach showed no significant differences from those obtained using acid–base titration at the 95% confidence level. The greenness of the proposed approach was evaluated using the Complementary Green Analytical Procedure Index, Analytical Greenness, and Blue Applicability Grade Index, demonstrating enhanced environmental friendliness and practical advantages, as well as simple, portable instrumentation that is easier to operate than traditional spectrophotometric and titration methods. Furthermore, a sustainability assessment based on the Need, Quality, and Sustainability index underscored its enhanced sustainability. Full article
(This article belongs to the Special Issue Advances in Green Analytical Chemistry)
Show Figures

Figure 1

10 pages, 227 KiB  
Article
The Impact of Ureteral Stent Indwelling Duration on Encrustation Degree and Extraction Difficulty: A Retrospective Study
by Laurian Stefan Maxim, Ruxandra Maria Rotaru, Camelia Cornelia Scarneciu, Marius Alexandru Moga, Raul Dumitru Gherasim, Mihail Alexandru Badea, Alexandru Ghicavîi, Razvan Dragos Multescu, Bogdan Ovidiu Feciche and Ioan Scarneciu
J. Clin. Med. 2025, 14(12), 4334; https://doi.org/10.3390/jcm14124334 - 18 Jun 2025
Viewed by 424
Abstract
Background/Objectives: Ureteral stents are indispensable tools in contemporary urological practice; however, their prolonged indwelling is frequently associated with a spectrum of complications. This study aims to evaluate the correlation between indwelling duration and the extent of stent encrustation, as well as the impact [...] Read more.
Background/Objectives: Ureteral stents are indispensable tools in contemporary urological practice; however, their prolonged indwelling is frequently associated with a spectrum of complications. This study aims to evaluate the correlation between indwelling duration and the extent of stent encrustation, as well as the impact on extraction difficulty. Methods: A retrospective analysis was conducted on 33 patients treated at Clinical County Emergency Hospital of Brașov between December 2023 and December 2024. All patients had polyurethane double-J ureteral stents placed. Parameters assessed included the degree of stent encrustation, discoloration, incidence of urinary tract infections (UTIs), and extraction difficulty. These were analyzed in relation to indwelling time and patient comorbidities. Statistical processing was performed using SPSS 23.0 software, with significance set at p < 0.05. Results: A statistically significant association was observed between longer stent indwelling times and higher grades of encrustation, particularly for the intervals of 45–90 days and over 90 days (p = 0.008 and p = 0.01, respectively). Low encrustation demonstrated correlations with certain comorbidities, whereas no statistically relevant associations were found for moderate and severe encrustation. Black coloration of the stents was strongly associated with UTIs caused by Escherichia coli, Klebsiella spp., and Enterococcus spp. (p < 0.001), as well as with extended indwelling durations (p < 0.001). No significant correlation was identified between the presence of UTIs and the degree of stent encrustation. Conclusions: Indwelling time is a critical determinant of both ureteral stent encrustation and discoloration, with direct implications for clinical decision-making regarding stent management and extraction planning. Timely removal and close monitoring are essential to reduce the risk of complications associated with long-term stent placement. Full article
(This article belongs to the Section Nephrology & Urology)
10 pages, 1365 KiB  
Article
Elastographic Histogram Analysis as a Non-Invasive Tool for Detecting Early Intestinal Remodeling in Experimental IBD
by Rareș Crăciun, Marcel Tanțău and Cristian Tefas
J. Clin. Med. 2025, 14(11), 3992; https://doi.org/10.3390/jcm14113992 - 5 Jun 2025
Viewed by 451
Abstract
Background/Objectives: Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by cycles of inflammation and tissue remodeling that can culminate in fibrosis. Differentiating between early inflammatory and fibrotic bowel wall changes remains a diagnostic challenge due to overlapping imaging [...] Read more.
Background/Objectives: Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by cycles of inflammation and tissue remodeling that can culminate in fibrosis. Differentiating between early inflammatory and fibrotic bowel wall changes remains a diagnostic challenge due to overlapping imaging features. This study aimed to assess the potential of elastography, specifically pixel histogram analysis, as a non-invasive method to identify acute inflammatory changes in a rat model of 2,4,6-trinitrobenzenesulfonic (TNBS)-induced colitis. Methods: Female CRL:Wi rats were randomized into control and experimental groups, with the latter receiving intracolonic TNBS to induce acute colitis. On day 7 post-induction, all animals underwent ultrasonographic and strain elastographic assessment of the distal colon using a standardized protocol. Histogram-based analysis of red, green, and blue pixel distributions was performed on elastographic video frames. Results were compared with histologic grading of inflammation and fibrosis using hematoxylin-eosin and Masson’s trichrome staining. Results: Rats with TNBS-induced colitis exhibited significant weight loss, increased bowel wall thickness (31.5% vs. controls, p < 0.01), and elevated elastographic pixel intensity across all color channels (p < 0.05). Histologically, experimental animals showed severe inflammation and early submucosal fibrosis. A strong positive correlation was found between elastographic histogram values and histologic fibrosis scores (r = 0.86, p < 0.01), confirming the technique’s diagnostic relevance. Conclusions: Elastographic pixel histogram analysis is a reproducible, non-invasive approach capable of distinguishing acute inflammatory changes and early fibrotic remodeling in experimental colitis. These findings support its potential application as a diagnostic adjunct in the early assessment and monitoring of IBD-related bowel wall changes. Full article
Show Figures

Figure 1

20 pages, 9942 KiB  
Article
Drying of Grade-Out Cape Gooseberry (Physalis peruviana Linn.) with Mild Hydrostatic Osmotic Pretreatment Using Rotary Tray Dryer: A Case Study at Mae Hae Royal Project Development Center, Chiang Mai Province
by Rittichai Assawarachan
Processes 2025, 13(6), 1790; https://doi.org/10.3390/pr13061790 - 5 Jun 2025
Viewed by 527
Abstract
This study develops a value-added processing technique for grade-out cape gooseberry (Physalis peruviana Linn.) by applying mild hydrostatic osmotic pretreatment combined with rotary tray drying. Fruits classified as grade-out, often discarded due to aesthetic flaws, were subjected to osmotic treatment at 0.5 [...] Read more.
This study develops a value-added processing technique for grade-out cape gooseberry (Physalis peruviana Linn.) by applying mild hydrostatic osmotic pretreatment combined with rotary tray drying. Fruits classified as grade-out, often discarded due to aesthetic flaws, were subjected to osmotic treatment at 0.5 bar for 12 h using a sucrose solution enhanced with citric acid and glycerin. Pretreatment significantly elevated water loss (52.61%) and solid gain (18.12%), reducing moisture content prior to drying. Rotary tray drying was conducted at temperatures of 50, 60, and 70 °C. Drying at 60 °C achieved the ideal balance between efficiency and product quality. Samples pretreated and dried at 60 °C exhibited a 35% reduction in drying time while preserving superior color (ΔE = 13.54 ± 1.81), vitamin C (71.76 ± 2.57 mg/100 g dry matter, DM), total phenolic content (202.9 ± 10.91 mg GAE/100 g DM), and antioxidant activity (ABTS = 95.87 ± 3.41 µmol TE/g DM; DPPH = 89.97 ± 1.27 µmol TE/g DM). A production trial was conducted using 1500 kg of raw material from the Mae Hae Royal Project Development Center in Chiang Mai, Thailand. This process yielded 220 kg of high-quality dried fruit at an overall cost of USD 6.93 per kg. Local farmers successfully applied this technique, demonstrating its potential to enhance livelihoods, avoid postharvest losses, and valorize low-quality produce in line with Sustainable Development Goal 12. This supports the Royal Project Foundation’s vision for sustainable agriculture. Full article
Show Figures

Figure 1

14 pages, 1433 KiB  
Article
Evaluation of Optical and Thermal Properties of NIR-Blocking Ophthalmic Lenses Under Controlled Conditions
by Jae-Yeon Pyo, Min-Cheul Kim, Seung-Jin Oh, Ki-Choong Mah and Jae-Young Jang
Sensors 2025, 25(11), 3556; https://doi.org/10.3390/s25113556 - 5 Jun 2025
Viewed by 520
Abstract
This study evaluates the optical and thermal performance of near-infrared (NIR)-blocking spectacle lenses at luminous transmittance grades of 0, 2, and 3. Ten lens types were tested, including clear, tinted, and NIR-blocking spectacle lenses (NIBSL). The NIR blocking rate was measured across 780–1100 [...] Read more.
This study evaluates the optical and thermal performance of near-infrared (NIR)-blocking spectacle lenses at luminous transmittance grades of 0, 2, and 3. Ten lens types were tested, including clear, tinted, and NIR-blocking spectacle lenses (NIBSL). The NIR blocking rate was measured across 780–1100 nm and 1100–1400 nm wavelength bands. Color reproduction was assessed using sharpness (MTF 50), point spread function (PSF), and color accuracy (ΔE00) under 1000 lux outdoor illumination. Thermal insulation was analyzed by monitoring porcine skin temperature at 36 °C and 60 °C under each lens type. As a result, the NIBSL showed better near-infrared blocking performance than other types of lenses in both wavelength ranges, and the coated NIBSL blocked near-infrared more effectively than the polymerized lenses. Compared with other types of lenses, NIBSL showed no difference in object identification, color recognition, and reproducibility, so there is no problem in using them together. Strong correlations were observed between lens surface temperature and underlying pig skin temperature, and inverse correlations between NIR blocking rate and pig skin temperature gradient. These findings confirm that NIBSL offer enhanced protection against NIR-induced thermal effects without compromising optical performance, supporting their use in daily environments for ocular and skin safety. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 6392 KiB  
Article
Dual-Phase Severity Grading of Strawberry Angular Leaf Spot Based on Improved YOLOv11 and OpenCV
by Yi-Xiao Xu, Xin-Hao Yu, Qing Yi, Qi-Yuan Zhang and Wen-Hao Su
Plants 2025, 14(11), 1656; https://doi.org/10.3390/plants14111656 - 29 May 2025
Viewed by 644
Abstract
Phyllosticta fragaricola-induced angular leaf spot causes substantial economic losses in global strawberry production, necessitating advanced severity assessment methods. This study proposed a dual-phase grading framework integrating deep learning and computer vision. The enhanced You Only Look Once version 11 (YOLOv11) architecture incorporated [...] Read more.
Phyllosticta fragaricola-induced angular leaf spot causes substantial economic losses in global strawberry production, necessitating advanced severity assessment methods. This study proposed a dual-phase grading framework integrating deep learning and computer vision. The enhanced You Only Look Once version 11 (YOLOv11) architecture incorporated a Content-Aware ReAssembly of FEatures (CARAFE) module for improved feature upsampling and a squeeze-and-excitation (SE) attention mechanism for channel-wise feature recalibration, resulting in the YOLOv11-CARAFE-SE for the severity assessment of strawberry angular leaf spot. Furthermore, an OpenCV-based threshold segmentation algorithm based on H-channel thresholds in the HSV color space achieved accurate lesion segmentation. A disease severity grading standard for strawberry angular leaf spot was established based on the ratio of lesion area to leaf area. In addition, specialized software for the assessment of disease severity was developed based on the improved YOLOv11-CARAFE-SE model and OpenCV-based algorithms. Experimental results show that compared with the baseline YOLOv11, the performance is significantly improved: the box mAP@0.5 is increased by 1.4% to 93.2%, the mask mAP@0.5 is increased by 0.9% to 93.0%, the inference time is shortened by 0.4 ms to 0.9 ms, and the computational load is reduced by 1.94% to 10.1 GFLOPS. In addition, this two-stage grading framework achieves an average accuracy of 94.2% in detecting selected strawberry horn leaf spot disease samples, providing real-time field diagnostics and a high-throughput phenotypic analysis for resistance breeding programs. This work demonstrates the feasibility of rapidly estimating the severity of strawberry horn leaf spot, which will establish a robust technical framework for strawberry disease management under field conditions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

38 pages, 1810 KiB  
Article
Symmetric Responses to Diet by Plumage Carotenoids in Violet-Sensitive Piciform–Coraciiform Birds
by Robert Bleiweiss
Diversity 2025, 17(6), 379; https://doi.org/10.3390/d17060379 - 27 May 2025
Viewed by 663
Abstract
Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redder plumage in response to [...] Read more.
Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redder plumage in response to higher dietary carotenoids appear conceptually incomplete, as potential blue-shifted counterparts were not considered. A latent symmetric response is highlighted by recent evidence showing that the maximum absorbance bands of various colorful plumage pigments are red-shifted in birds with ultraviolet-sensitive (UVS) color vision but blue-shifted in those with violet-sensitive (VS) color vision. Blue-shifted responses to increased dietary carotenoid contents may also be underestimated, as relevant studies have focused on species-rich but uniformly UVS Passerida passerines. This study explored the relationship between pattern–process symmetries and diets of VS Piciformes–Coraciiformes by gauging the responses of their plumage reflectance to a modified diet index (Dietc), where the overall rank carotenoid contents of food items were weight-averaged by three levels of importance in a species’ diet. In the case of both sexes, the main long-wavelength reflectance band for the three carotenoid-based pigment classes defined the same graded series of blue shifts in response to higher Dietc. Yellow showed a strong absolute (negative slope) blue shift, orange showed a weaker absolute blue shift, and red exhibited only a blue shift (flat, non-significant slope) relative to absolute red shifts (positive slope). The secondary shorter-wavelength reflectance band was also unresponsive to Dietc in the VS Piciformes–Coraciiformes (relative blue shift) compared with earlier evidence for it decreasing (absolute red shift) at higher Dietc in UVS species. Results for the intervening minimum reflectance (maximum absorbance) band were intermediate between those for the other reflectance bands. No pigment class monopolized lower or higher Dietc, but red was less variable overall. Phylogenetic independence, sexually similar responses, and specimen preservation reinforced characterizations. A review of avian perceptual studies suggested that VS models discriminate yellows and oranges extremely well, consistent with the importance of the corresponding carotenoids as Dietc indicators. Both UVS and VS species appear to produce putatively more costly and possibly beneficial carotenoid metabolites and/or concentrations in response to higher Dietc, supporting underlying invariant processes in relation to carotenoid limitations and honest signaling despite opposite plumage shifts and their different chemical bases. In symmetry parlance, pigment classes (red) or wavebands (short) that lack responses to Dietc suggest broken pattern and process symmetry. The biology of VS Piciformes–Coraciiformes may favor such exceptions owing to selection for visual resemblance and tuning specializations, although universal constraints on physical and chemical properties of (particularly red) carotenoids may favor certain functional tendencies. Thus, symmetry principles organize carotenoid diversity into a simplified and predictive framework linked to color vision. Full article
(This article belongs to the Collection Feature Papers in Animal Diversity)
Show Figures

Graphical abstract

Back to TopTop