Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Materials
2.2. Determination of Fruit Quality
2.2.1. Determination of Color
2.2.2. Determination of Chlorophyll and Carotenoids
2.2.3. Determination of Turbidity
2.2.4. Determination of Stability
2.2.5. Determination of pH
2.2.6. Determination of Viscosity
2.3. Determination of Antioxidant Activity in Fruits
2.3.1. Determination of DPPH and ABTS Free Radical Scavenging Rates
2.3.2. Determination of Malondialdehyde (MDA)
2.3.3. Determination of Total Phenols
2.3.4. Determination of Total Flavonoids
2.3.5. Determination of Vc
2.4. Determination of Fruit Flavor
2.4.1. Determination of Total Soluble Solids (TSS)
2.4.2. Determination of Total Acid (TA)
2.4.3. Determination of Sugar/Acid Ratio
2.4.4. Electronic-Nose (E-Nose) Analysis
2.4.5. Electronic Tongue (E-Tongue) Analysis
2.4.6. Determination of Aroma Compounds
2.4.7. Qualitative Quantification of Volatile Organic Compounds (VOCs)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Texture and Color Variation of the Fruit
3.2. Changes in Functional Components and Physical Stability
3.3. Changes in Antioxidant Activity in Fruits
3.4. Changes in Key Flavor Determinants and Overall Flavor Perception
3.5. Changes in VOCs in Fruits
3.6. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, K.; Kumar, R.; Kumar, A. Himalayan Horticulture Produce Supply Chain Disruptions and Sustainable Business Solution—A Case Study on KiwiFruit in Uttarakhand. Horticulturae 2022, 8, 1018. [Google Scholar] [CrossRef]
- Liu, H.; Pei, H.; Jiao, J.; Jin, M.; Li, H.; Zhu, Q.; Ma, Y.; Rao, J. 1-Methylcyclopropene treatment followed with ethylene treatment alleviates postharvest chilling injury of ‘Xuxiang’ kiwifruit during low-temperature storage. Food Control 2021, 130, 108340. [Google Scholar] [CrossRef]
- Li, C.; Liang, M. Effect of quick freezing on kiwifruit butyrosinase activity and product quality. Jiangsu Agric. Sci. 2007, 47, 187–189. [Google Scholar]
- He, Y.; Zhou, H.; Liu, H.; Wang, T. Techonlogy of Storage and Preservation of Kiwifruit: Advances. J. Agric. 2019, 9, 33–37. [Google Scholar]
- Vicent, V.; Ndoye, F.T.; Verboven, P.; Nicolaï, B.M.; Alvarez, G. Quality changes kinetics of apple tissue during frozen storage with temperature fluctuations. Int. J. Refrig. 2018, 92, 165–175. [Google Scholar] [CrossRef]
- Mahlaba, N.; Tesfay, S.Z.; Dodd, M.; Magwaza, L.S.; Mditshwa, A.; Ngobese, N.Z.; Kruger, F. Effects of cold storage temperatures on postharvest quality of South African golden kiwifruit. Acta Hortic. 2022, 1349, 277–282. [Google Scholar] [CrossRef]
- Xu, R.; Chen, Q.; Zhang, Y.; Li, J.; Zhou, J.; Wang, Y.; Chang, H.; Meng, F.; Wang, B. Research on Flesh Texture and Quality Traits of Kiwifruit (cv. Xuxiang) with Fluctuating Temperatures during Cold Storage. Foods 2023, 12, 3892. [Google Scholar] [CrossRef]
- Cornacchia, R.; Amodio, M.L.; Rinaldi, R.; Colelli, G. Effect of 1-Methylcyclopropene and Controlled Atmosphere on Storage of Kiwifruits. Acta Hortic. 2015, 1071, 483–488. [Google Scholar]
- Choi, H.R.; Tilahun, S.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Jeong, C.S. Harvest time affects quality and storability of kiwifruit (Actinidia spp.): Cultivars during long-term cool storage. Sci. Hortic. 2019, 256, 108523. [Google Scholar] [CrossRef]
- Reno, M.; Prado, M.; Resende, J. Microstructural changes of frozen strawberries submitted to pre-treatments with additives and vacuum impregnation. Cienc. Tecnol. Aliment. 2011, 31, 247–256. [Google Scholar] [CrossRef]
- Duan, W.; Yang, C.; Cao, X.; Wei, C.; Chen, K.; Li, X.; Zhang, B. Chilling-induced peach flavor loss is associated with expression and DNA methylation of functional genes. J. Adv. Res. 2023, 53, 17–31. [Google Scholar] [CrossRef]
- Cirillo, A.; Magri, A.; Petriccione, M.; Di Vaio, C. Effects of cold storage on quality parameters and nutraceutical compounds of pomegranate fruits (cv. Acco). Adv. Hortic. Sci. 2023, 37, 15–23. [Google Scholar] [CrossRef]
- Tan, Y.; Misran, A.; Daim, L.D.J.; Ding, P.; Dek, S.P. Effect of freezing on minimally processed durian for long term storage. Sci. Hortic. 2020, 264, 109170. [Google Scholar] [CrossRef]
- Fadiji, T.; Ashtiani, S.-H.M.; Onwude, D.I.; Li, Z.; Opara, U.L. Finite Element Method for Freezing and Thawing Industrial Food Processes. Foods 2021, 10, 869. [Google Scholar] [CrossRef]
- Ozturk, B.; Korkmaz, M.; Aglar, E. Changes in fruit quality properties and phytochemical substances of kiwifruit (Actinidia deliciosa) grown in different agro-ecological conditions during cold storage. BMC Plant Biol. 2024, 24, 795. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, S.; Wang, Y.; Tan, S.; Liu, J.; Xiong, A. Effects of Different Storage Conditions on the Content of Chlorophyll and Expression Analysis of Related Genes in Celery (Apium graveolens). J. Agri. Biol. 2022, 30, 1078–1086. [Google Scholar]
- Manivannan, A.; Narasegowda, S.; Prakash, T. Comparative study on color coordinates, phenolics, flavonoids, carotenoids, and antioxidant potential of marigold (Tagetes sp.) with diverse colored petals. J. Food Meas. Charact. 2021, 15, 4343–4353. [Google Scholar] [CrossRef]
- Kubo, M.T.K.; Augusto, P.E.D.; Cristianini, M. Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res. Int. 2013, 51, 170–179. [Google Scholar] [CrossRef]
- Li, X.; Hu, Q.; Jiang, S.; Li, F.; Lin, J.; Han, L.; Hong, Y.; Lu, W.; Gao, Y.; Chen, D. Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism. J. Saudi Chem. Soc. 2015, 19, 454–460. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, L.; Guo, Y.; Hui, W.; Niu, J.; Song, S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. Plant Physiol. Biochem. 2024, 217, 109285. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, Y.; Li, Y.; Du, C. Quality Effects of Pomegranate Juice Beverage by Ultra High Pressure and Pasteurization. Cienc. Tecnol. Aliment. 2023, 48, 89–94. [Google Scholar]
- Yuan, X.; Zheng, H.; Fan, J.; Liu, F.; Li, J.; Zhong, C.; Zhang, Q. Comparative Study on Physicochemical and Nutritional Qualities of Kiwifruit Varieties. Foods 2023, 12, 108. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Wang, W.; Bhandari, B. A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. Int. J. Refrig. 2020, 113, 49–57. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Zhao, J.; Li, P.; Li, L.; Wang, F. A machine learning method for juice human sensory hedonic prediction using electronic sensory features. Curr. Res. Food Sci. 2023, 7, 100576. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Liu, Y.; Wang, D. Analyzing Volatile Compounds of Young and Mature Docynia delavayi Fruit by HS-SPME-GC-MS and rOAV. Foods 2023, 12, 59. [Google Scholar] [CrossRef]
- Yuan, H.; Cao, G.; Hou, X.; Huang, M.; Du, P.; Tan, T.; Zhang, Y.; Zhou, H.; Liu, X.; Liu, L.; et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants. Mol. Plant 2022, 15, 189–202. [Google Scholar] [CrossRef]
- Li, H.; Cao, S.; Liu, Z.; Li, N.; Xu, D.; Yang, Y.; Mo, H.; Hu, L. Rapid assessment of ready-to-eat Xuxiang kiwifruit quality based on chroma recognition and GC-MS analysis. LWT 2023, 182, 114796. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Zhang, W.; Zhang, M.; Peng, W.; Zhang, C.; Ma, T. Analysis of ‘Cuixiang’ kiwifruit fruit quality evolution under home storage conditions. Food Ferment. Ind. 2024, 50, 19–27. [Google Scholar]
- Bonat Celli, G.; Ghanem, A.; Su-Ling Brooks, M. Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Rev. Int. 2016, 32, 280–304. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, C.J.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Yuan, Q.; Lei, Y.; Peng, W.; Zhang, M.; Li, X.; Sun, X.; Ma, T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem. X 2022, 15, 100427. [Google Scholar] [CrossRef]
- More, F.S.F.; León, J.L.S. Mermelada a base de pulpa y cáscara de maracuyá (Passiflora edulis Sims.) edulcorado con stevia. Agroind. Sci. 2022, 12, 157–163. [Google Scholar]
- Liu, X.; Zhang, S.; Shang, J.; Zhang, A.; Zhu, A.; Wu, Z.; Zha, D. Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression. Sci. Rep. 2021, 11, 6937. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.-X.; Li, M.-Y.; Tan, G.-F.; Liu, Y.-H.; Liu, P.-Z.; Li, Y.-P.; Liu, H.; Zhuang, J.; Tao, J.-P.; et al. Effect of Temperature on Photosynthetic Pigment Degradation during Freeze–Thaw Process of Postharvest of Celery Leaves. Horticulturae 2024, 10, 267. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, P.; Zhu, Z.; Sun, D.-W. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes. J. Food Eng. 2020, 286, 110112. [Google Scholar] [CrossRef]
- Martins, R.C.; Silva, C.L.M. Modelling colour and chlorophyll losses of frozen green beans (Phaseolus vulgaris, L.). Int. J. Refrig. 2002, 25, 966–974. [Google Scholar] [CrossRef]
- Cano, P.M.; Marín, M.A.; Ancos, B.D. Pigment and colour stability of frozen kiwi-fruit slices during prolonged storage. Z. Leb. Unters. Forsch. 1993, 197, 346–352. [Google Scholar] [CrossRef]
- Ledari, J.M.; Milani, J.M.; Shahidi, S.B.; Golkar, A. Comparative analysis of freeze drying and spray drying methods for encapsulation of chlorophyll with maltodextrin and whey protein isolate. Food Chem. X 2024, 21, 101156. [Google Scholar] [CrossRef]
- Lavelli, V.; Sereikaitė, J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022, 11, 437. [Google Scholar] [CrossRef]
- Effects of dehydrofreezing conditions on carrot β-carotene and kinetics of β -carotene change in dehydrofrozen carrots during storage. Food Sci. Technol. 2022, 42, e70220. [CrossRef]
- Peng, J.; Zhu, S.; Lin, X.; Wan, X.; Zhang, Q.; Njie, A.; Luo, D.; Long, Y.; Fan, R.; Dong, X. Evaluation of Preharvest Melatonin on Soft Rot and Quality of Kiwifruit Based on Principal Component Analysis. Foods 2023, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z. Research Progress on Stability of Fruit and Vegetable Beverage. China Fruit Veg. 2022, 42, 18–22. [Google Scholar]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.-S.; Katrich, E.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wang, R. Amelioration of postharvest chilling stress by trehalose in pepper. Sci. Hortic. 2018, 232, 52–56. [Google Scholar] [CrossRef]
- Liu, S.; Jing, G.; Zhu, S. Nitric oxide (NO) involved in antioxidant enzyme gene regulation to delay mitochondrial damage in peach fruit. Postharvest Biol. Technol. 2022, 192, 111993. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Cao, J.; Li, Y. Effect of chilling temperatures on physiological properties, phenolic metabolism and antioxidant level accompanying pulp browning of peach during cold storage. Sci. Hortic. 2019, 255, 175–182. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Shi, Q.; Lu, Y.; Yan, J.; Wu, D.-T.; Qin, W. Changes in the Fruit Quality, Phenolic Compounds, and Antioxidant Potential of Red-Fleshed Kiwifruit during Postharvest Ripening. Foods 2023, 12, 1509. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Zhang, S.; Ding, K.; Wang, R.; Shan, Y.; Ding, S. Transcriptomic and metabolomic analyses reveal the mechanism of cold chain breaks accelerate postharvest kiwifruit ripening and flavonoid loss. Sci. Hortic. 2025, 341, 113958. [Google Scholar] [CrossRef]
- Liu, X.; Bulley, S.M.; Varkonyi-Gasic, E.; Zhong, C.; Li, D. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. Plant Physiol. 2023, 192, 982–999. [Google Scholar] [CrossRef]
- Hettihewa, S.K.; Hemar, Y.; Rupasinghe, H.P.V. Flavonoid-Rich Extract of Actinidia macrosperma (A Wild Kiwifruit) Inhibits Angiotensin-Converting Enzyme In Vitro. Foods 2018, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Li, H.; Deng, H.; Yang, T.; Diao, Y.; Meng, Y. Development and Quality Characteristics Analysis of Kiwi Fruit Powder with Cold Crushing Process. J. Anhui Agric. Sci. 2018, 46, 183–188. [Google Scholar]
- Wang, Y.; Shan, W.; Li, Y.; Han, Y.; Li, X.; Wang, C. Improving hawthorn fruit pulp processing and quality through optimized freeze-thaw cycles. J. Food Compos. Anal. 2025, 137, 106882. [Google Scholar] [CrossRef]
- Li, R.-X.; Amenyogbe, E.; Lu, Y.; Jin, J.-H.; Xie, R.-T.; Huang, J.-S. Effects of low-temperature stress on intestinal structure, enzyme activities and metabolomic analysis of juvenile golden pompano (Trachinotus ovatus). Front. Mar. Sci. 2023, 10, 114–120. [Google Scholar] [CrossRef]
- Fan, S.; Chen, A.; Zhang, Q.; Liu, P.; Guan, W. Effect of Low Temperature Domestication Combined with Ice Temperature Storage on Kiwifruit Quality. Packag. Eng. 2024, 45, 62–71. [Google Scholar]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef]
- Fu, B.; Wang, W.; Li, X.; Qi, T.; Shen, Q.; Li, K.; Liu, X.; Li, S.; Allan, A.C.; Yin, X. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1. Plant Biotechnol. J. 2023, 21, 1695–1706. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Mu, L.; Wang, W.; Zhan, Q.; Luo, M.; Tian, H.; Lv, C.; Li, J. Discriminant research for identifying aromas of non-fermented Pu-erh tea from different storage years using an electronic nose. J. Food Process. Preserv. 2018, 42, e13721. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Li, X.; Wu, X.; Zhao, Y.; Ma, Y.; Bi, J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. J. Agric. Food Chem. 2021, 69, 7–27. [Google Scholar] [CrossRef]
- Pereira, C.; Mendes, D.; Martins, N.; Gomes da Silva, M.; Garcia, R.; Cabrita, M.J. A Sustainable Approach Based on the Use of Unripe Grape Frozen Musts to Modulate Wine Characteristics as a Proof of Concept. Beverages 2022, 8, 79. [Google Scholar] [CrossRef]
- Wan, X.M.; Stevenson, R.J.; Chen, X.D.; Melton, L.D. Application of headspace solid-phase microextraction to volatile flavour profile development during storage and ripening of kiwifruit. Food Res. Int. 1999, 32, 175–183. [Google Scholar] [CrossRef]
- Wang, Q.; An, X.; Xiang, M.; Chen, X.; Luo, Z.; Fu, Y.; Chen, M.; Chen, J. Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit. Horticulturae 2021, 7, 381. [Google Scholar] [CrossRef]
- Choi, H.R.; Baek, M.W.; Tilahun, S.; Jeong, C.S. Long-term cold storage affects metabolites, antioxidant activities, and ripening and stress-related genes of kiwifruit cultivars. Postharvest Biol. Technol. 2022, 189, 111912. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C.; Qi, X.; Chen, J.; Zhong, Y. Abid Muhammad, Miaomiao Lin, Jinbao Fang, The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta). Hortic. Res. 2021, 8, 97. [Google Scholar] [CrossRef]
- Chai, J.; Li, J.; Liu, Q.; Chen, Z.; Liu, Z. Differential changes in respiratory metabolism and energy status in the outer pericarp and core tissues affect the ripening of ‘Xuxiang’ kiwifruit. Postharvest Biol. Technol. 2024, 212, 112876. [Google Scholar] [CrossRef]
- Lu, L.; Ma, Y.; Gu, X.; Xiao, J.; Song, G.; Zhang, H. Changes of polysaccharide content and pectin degradation related enzyme activities in cell wall during softening of kiwifruit. Acta Agric. Zhejiangensis 2022, 34, 2648–2658. [Google Scholar]
- Daneshi Nergi, M.A.; Ahmadi, N. Effects of 1-MCP and ethylene on postharvest quality and expression of senescence-associated genes in cut rose cv. Sparkle. Sci. Hortic. 2014, 166, 78–83. [Google Scholar] [CrossRef]
- Jiang, W.; Li, N.; Zhang, D.; Meinhardt, L.; Cao, B.; Li, Y.; Song, L. Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv. ‘Lingwuchangzao’). PLoS ONE 2020, 15, e241491. [Google Scholar] [CrossRef]
- Leandro, M.R.; Andrade, L.F.; de Souza Vespoli, L.; Soares, F.S.; Moreira, J.R.; Pimentel, V.R.; Barbosa, R.P.; de Olivera, M.V.; Silveira, V.; de Souza Filho, G.A. Combination of osmotic stress and sugar stress response mechanisms is essential for Gluconacetobacter diazotrophicus tolerance to high-sucrose environments. Appl. Microbiol. Biotechnol. 2021, 105, 7463–7473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Niu, J.; Wang, W.; Wang, Y.; Cheng, L.; Meng, Y.; Guo, Y.; Song, S. Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds. Foods 2025, 14, 2322. https://doi.org/10.3390/foods14132322
Zhao C, Niu J, Wang W, Wang Y, Cheng L, Meng Y, Guo Y, Song S. Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds. Foods. 2025; 14(13):2322. https://doi.org/10.3390/foods14132322
Chicago/Turabian StyleZhao, Chenxu, Junpeng Niu, Wei Wang, Yebo Wang, Linlin Cheng, Yonghong Meng, Yurong Guo, and Shujie Song. 2025. "Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds" Foods 14, no. 13: 2322. https://doi.org/10.3390/foods14132322
APA StyleZhao, C., Niu, J., Wang, W., Wang, Y., Cheng, L., Meng, Y., Guo, Y., & Song, S. (2025). Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds. Foods, 14(13), 2322. https://doi.org/10.3390/foods14132322