Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. The INSPIRED Grid
2.3. Evaluation of Ultrawide Field Color Images and Predominantly Peripheral Lesions
2.4. Evaluation of PPL and RNP
2.5. Intergrader Agreement
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.K.; et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, P.H. The contribution of the English NHS Diabetic Eye Screening Programme to reductions in diabetes-related blindness, comparisons within Europe, and future challenges. Acta Diabetol. 2021, 58, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification. ETDRS Report Number 10. Early Treatment Diabetic Retinopathy Study Research Group. Available online: https://pubmed.ncbi.nlm.nih.gov/2062513/ (accessed on 11 March 2025).
- Silva, P.S.; Horton, M.B.; Clary, D.; Lewis, D.G.; Sun, J.K.; Cavallerano, J.D.; Aiello, L.P. Identification of Diabetic Retinopathy and Ungradable Image Rate with Ultrawide Field Imaging in a National Teleophthalmology Program. Ophthalmology 2016, 123, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- A Randomized Clinical Trial of Early Panretinal Photocoagulation for Ischermic Central Vein Occlusion: The Central Vein Occlusion Study Group N Report. Ophthalmology 1995, 102, 1434–1444. [CrossRef]
- Choudhry, N.; Duker, J.S.; Freund, K.B.; Kiss, S.; Querques, G.; Rosen, R.; Sarraf, D.; Souied, E.H.; Stanga, P.E.; Staurenghi, G.; et al. Classification and Guidelines for Widefield Imaging: Recommendations from the International Widefield Imaging Study Group. Ophthalmol Retin. 2019, 3, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Liu, D.; Glassman, A.R.; Aiello, L.P.; Grover, S.; Kingsley, R.M.; Melia, M.; Sun, J.K.; Network, F.T.D.R. Assessment of Fluorescein Angiography Nonperfusion in Eyes with Diabetic Retinopathy using Ultrawide Field Retinal Imaging. Retina 2022, 42, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Dela Cruz, A.J.; Ledesma, M.G.; van Hemert, J.; Radwan, A.; Cavallerano, J.D.; Aiello, L.M.; Sun, J.K.; Aiello, L.P. Diabetic Retinopathy Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography. Ophthalmology 2015, 122, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Association of Predominantly Peripheral Lesions on Ultra-Widefield Imaging and the Risk of Diabetic Retinopathy Worsening Over Time. Available online: https://pubmed.ncbi.nlm.nih.gov/35980608/ (accessed on 11 March 2025).
- Niki, T.; Muraoka, K.; Shimizu, K. Distribution of capillary nonperfusion in early-stage diabetic retinopathy. Ophthalmology 1984, 91, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Peripheral Lesions Identified on Ultrawide Field Imaging Predict Increased Risk of Diabetic Retinopathy Progression over 4 Years. Available online: https://pubmed.ncbi.nlm.nih.gov/25704318/ (accessed on 11 March 2025).
- Blodi, B.A.; Domalpally, A.; Scott, I.U.; Ip, M.S.; Oden, N.L.; Elledge, J.; Warren, K.; Altaweel, M.M.; Kim, J.E.; Van Veldhuisen, P.C. Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) Study system for evaluation of stereoscopic color fundus photographs and fluorescein angiograms: SCORE Study Report 9. Arch. Ophthalmol. Chic. Ill. 1960. 2010, 128, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.; Csincsik, L.; Flynn, E.; Curcio, C.A.; Kiss, S.; Sadda, S.R.; Hogg, R.; Peto, T.; Lengyel, I. The clinical relevance of visualising the peripheral retina. Prog. Retin. Eye Res. 2019, 68, 83–109. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.M.; Aaker, G.D.; Parlitsis, G.; Cho, M.; D’Amico, D.J.; Kiss, S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 2012, 32, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.S.; Chew, M.C.; van Hemert, J.; Singer, M.A.; Bell, D.; Sadda, S.R. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index. Br. J. Ophthalmol. 2016, 100, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Thykjaer, A.S.; Andresen, J.; Andersen, N.; Bek, T.; Heegaard, S.; Hajari, J.; Laugesen, C.S.; Möller, S.; Pedersen, F.N.; Kawasaki, R.; et al. Inter-grader reliability in the Danish screening programme for diabetic retinopathy. Acta Ophthalmol. 2023, 101, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Marchione, G.; Di Giorgio, S.; Rotondi, G.; Longhin, E.; Frizziero, L.; Pilotto, E.; Parrozzani, R.; Midena, G. Ultra-wide-field fundus photography compared to ophthalmoscopy in diagnosing and classifying major retinal diseases. Sci. Rep. 2022, 12, 19287. [Google Scholar] [CrossRef] [PubMed]
- Greater Houston Retina Research. Faricimab for Retinal Non-Perfusion Associated With Non-Proliferative Diabetic Retinopathy: The MAGIC Phase 2, Multi-Center, Open-Label, Randomized Controlled Trial. Report No.: NCT05681884. Available online: https://clinicaltrials.gov/study/NCT05681884 (accessed on 17 April 2025).
- Sagong, M.; Van Hemert, J.; Olmos De Koo, L.C.; Barnett, C.; Sadda, S.R. Assessment of Accuracy and Precision of Quantification of Ultra-Widefield Images. Ophthalmology 2015, 122, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Supplement 173; Wide Field Ophthalmic Photography Image Storage SOP Classes. DICOM Standards Committee. Digital Imaging and Communications in Medicine (DICOM): Rosslyn, VA, USA, 2015.
- Donner, A.; Eliasziw, M. A goodness-of-fit approach to inference procedures for the kappa statistic: Confidence interval construction, significance-testing and sample size estimation. Stat. Med. 1992, 11, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.N.; Mishra, D.K.; Falahat, P.; Fischer, L.; Guzman, G.; Terheyden, J.H.; Holz, F.G.; Krohne, T.U.; Finger, R.P.; Wintergerst, M.W.M. Inter- Rater Reliability of Proliferative Diabetic Retinopathy Assessment on Wide-Field OCT-Angiography and Fluorescein Angiography. Transl. Vis. Sci. Technol. 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.Z.; Silva, P.S.; Aiello, L.P.; Sun, J.K. Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy. Semin. Ophthalmol. 2012, 27, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Alagorie, A.R.; Ramasamy, K.; van Hemert, J.; Yadav, N.K.; Pappuru, R.R.; Tufail, A.; Nittala, M.G.; Sadda, S.R.; Raman, R.; et al. Distribution of peripheral lesions identified by mydriatic ultra-wide field fundus imaging in diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Tsui, I.; Kaines, A.; Havunjian, M.A.; Hubschman, S.; Heilweil, G.; Prasad, P.S.; Oliver, S.C.N.; Yu, F.; Bitrian, E.; Hubschman, J.-P.; et al. Ischemic index and neovascularization in central retinal vein occlusion. Retina 2011, 31, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Sim, D.A.; Keane, P.A.; Rajendram, R.; Karampelas, M.; Selvam, S.; Powner, M.B.; Fruttiger, M.; Tufail, A.; Egan, C.A. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am. J. Ophthalmol. 2014, 158, 144–153.e1. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.D.; Messner, L.V.; Teitelbaum, B.; Michel, K.A.; Hariprasad, S.M. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am. J. Ophthalmol. 2013, 155, 1038–1044.e2. [Google Scholar] [CrossRef] [PubMed]
- Karampelas, M.; Sim, D.A.; Chu, C.; Carreno, E.; Keane, P.A.; Zarranz-Ventura, J.; Westcott, M.; Lee, R.W.; Pavesio, C.E. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am. J. Ophthalmol. 2015, 159, 1161–1168.e1. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Tan, C.S.; Bell, D.; Sadda, S.R. Area of peripheral retinal nonperfusion and treatment response in branch and central retinal vein occlusion. Retina 2014, 34, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Yu, J.; Zou, W.; Su, N.; Peng, Z.; Wu, X.; Huang, J.; Fang, Y.; Yuan, S.; Xie, P.; et al. Deep Learning Models for Segmenting Non-perfusion Area of Color Fundus Photographs in Patients With Branch Retinal Vein Occlusion. Front. Med. 2022, 9, 794045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, Z.; Yu, S.; Xiao, J.; Xie, L.; Xu, Y.; Tsui, C.-K.; Cui, K.; Zhao, L.; Zhang, G.; et al. An artificial intelligence system for the whole process from diagnosis to treatment suggestion of ischemic retinal diseases. Cell Rep. Med. 2023, 4, 101197. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wang, K.; Ghasemi Falavarjani, K.; Sagong, M.; Uji, A.; Ip, M.; Wykoff, C.C.; Brown, D.M.; van Hemert, J.; Sadda, S.R. Distribution of Nonperfusion Area on Ultra-widefield Fluorescein Angiography in Eyes With Diabetic Macular Edema: DAVE Study. Am. J. Ophthalmol. 2017, 180, 110–116. [Google Scholar] [CrossRef] [PubMed]
Patient | n = 36 |
---|---|
Age | 54.2 (12.6) |
Male | 20 (56%) |
Ethnicity | |
Asian | 7 (19%) |
Black | 1 (3%) |
White | 9 (25%) |
Other | 6 (17%) |
Not stated | 13 (36%) |
Bilateral recruitment | 14 (39%) |
Eyes | n = 50 |
---|---|
DR severity | |
Very mild NPDR (DRSS level 2) | 1 (2%) |
Mild NPDR (DRSS level 3) | 6 (12%) |
Moderate NPDR (DRSS level 4) | 0 (0%) |
Moderately severe NPDR (DRSS level 5) | 4 (8%) |
Severe NPDR (DRSS level 6) | 22 (44%) |
Mild PDR (DRSS level 7) | 6 (12%) |
Moderate PDR (DRSS level 8) | 8 (16%) |
High risk PDR (DRSS level 9) | 3 (6%) |
Very high-risk PDR (DRSS level 10) | 0 (0%) |
CFP PPL presence | 9 (18%) |
FFA PPL presence | 11 (22%) |
Before Training | After Training | |
---|---|---|
Numbers (patients; eyes; comparisons) | 14 patients; 21 eyes; 42 comparisons | 36 patients; 50 eyes; 100 comparisons |
ICDR | 60% | 91% |
Mild NPDR | 90% | 100% |
Moderate NPDR | 70% | 86% |
Severe NPDR | 60% | 88% |
PDR | 90% | 100% |
DRSS | 63% | 89% |
CFP PPL | 69% | 89% |
FFA PPL | 75% | 100% |
FFA NPI from 36 Patients; 50 Eyes; 100 Comparisons | ||||
---|---|---|---|---|
ICC | NPI | Average Area (mm2/DA) | Gradable Area (mm2/DA) | |
Total | 0.49 | 0.21 | 96.3 mm2/38.5 DA | 460.0 mm2/184.0 DA |
Centre | 0.40 | 0.63 | 0.5 mm2/0.2 DA | 0.785 mm2/0.3 DA |
Nasal | 0.57 | 0.24 | 37.9 mm2/15.1 DA | 154.8 mm2/61.9 DA |
0.5–5 mm ring | 0.06 | 0.04 | 0.7 mm2/0.3 DA | 19.0 mm2/7.6 DA |
5–10 mm ring | 0.52 | 0.16 | 9.2 mm2/3.7 DA | 55.8 mm2/22.3 DA |
10–15 mm ring | 0.60 | 0.35 | 28.0 mm2/11.2 DA | 80.0 mm2/32.0 DA |
Superior | 0.44 | 0.17 | 12.8 mm2/5.1 DA | 74.8 mm2/29.9 DA |
0.5–5 mm ring | 0.05 | 0.08 | 1.6 mm2/0.6 DA | 19.0 mm2/7.6 DA |
5–10 mm ring | 0.51 | 0.20 | 11.2 mm2/4.5 DA | 55.8 mm2/22.3 DA |
Temporal | 0.45 | 0.21 | 32.9 mm2/13.1 DA | 154.8 mm2/61.9 DA |
0.5–5 mm ring | 0.41 | 0.11 | 2.1 mm2/0.8 DA | 19.0 mm2/7.6 DA |
5–10 mm ring | 0.51 | 0.11 | 6.4 mm2/2.6 DA | 55.8 mm2/22.3 DA |
10–15 mm ring | 0.46 | 0.31 | 24.5 mm2/9.8 DA | 80.0 mm2/32.0 DA |
Inferior | 0.40 | 0.16 | 12.2 mm2/4.9 DA | 74.8 mm2/29.9 DA |
0.5–5 mm ring | 0.31 | 0.08 | 1.5 mm2/0.6 DA | 19.0 mm2/7.6 DA |
5–10 mm ring | 0.40 | 0.19 | 10.7 mm2/4.3 DA | 55.8 mm2/22.3 DA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riotto, E.; Tsai, W.-S.; Khalid, H.; Lamanna, F.; Roch, L.; Manoj, M.; Sivaprasad, S. Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1. Diagnostics 2025, 15, 1831. https://doi.org/10.3390/diagnostics15141831
Riotto E, Tsai W-S, Khalid H, Lamanna F, Roch L, Manoj M, Sivaprasad S. Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1. Diagnostics. 2025; 15(14):1831. https://doi.org/10.3390/diagnostics15141831
Chicago/Turabian StyleRiotto, Eleonora, Wei-Shan Tsai, Hagar Khalid, Francesca Lamanna, Louise Roch, Medha Manoj, and Sobha Sivaprasad. 2025. "Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1" Diagnostics 15, no. 14: 1831. https://doi.org/10.3390/diagnostics15141831
APA StyleRiotto, E., Tsai, W.-S., Khalid, H., Lamanna, F., Roch, L., Manoj, M., & Sivaprasad, S. (2025). Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1. Diagnostics, 15(14), 1831. https://doi.org/10.3390/diagnostics15141831