Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface
Abstract
1. Introduction
2. Test Materials and Methods
2.1. Materials
2.2. Preparation Method of Microcapsules
2.3. Painting Method for Cherry Wood Board
2.4. Testing and Characterization
- (1)
- Optical performance test
- (2)
- Self-healing performance test
- (3)
- Microstructure of paint film
- (4)
- Characterization of chemical composition of paint film
- (5)
- Mechanical property tests
3. Results and Discussion
3.1. Chemical Composition of UV Coatings on Cherry Wood Panels with Added CGA-T Microcapsules
3.2. Optical Properties of UV Coatings on Cherry Wood Panel Surfaces
3.3. Mechanical Properties of UV Coating on Cherry Wood Board Surfaces
3.4. Self-Healing Properties of UV Coatings on Cherry Wood Panel Surfaces
3.5. Microscopic Morphology of UV Coating on the Surface of Cherry Wood Boards
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mai, C.; Schmitt, U.; Niemz, P. A brief overview on the development of wood research. Holzforschung 2022, 76, 102–119. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, W.; Tan, Y. Multi-attribute hierarchical clustering for product family division of customized wooden doors. Bioresources 2023, 18, 7889–7904. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, N.; Xu, L.; Guan, H.Y. Study on cold/warm sensation of materials used in desktop of furniture. Wood Res. 2020, 65, 497–506. [Google Scholar] [CrossRef]
- Hu, W.; Yang, Z.; Shi, N.; Yu, X. Experimental study on effects of the selected load parameters on fatigue life of the mortise-and-tenon furniture joint. Wood Mater. Sci. Eng. 2025, 19, 1–7. [Google Scholar] [CrossRef]
- Hu, W.; Yang, P.; Wang, Y.; Zhang, J. Damage zone analysis and its effect on the elastic constants of beech blocks with different grain orientations under compression. Wood Sci. Technol. 2025, 59, 62. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R.; Luo, M.; Konukcu, A.C. Study on tensile strength of single dovetail joint: Experimental, numerical, and analytical analysis. Wood Mater. Sci. Eng. 2023, 18, 1478–1486. [Google Scholar] [CrossRef]
- Qi, Y.Q.; Sun, Y.; Zhou, Z.W.; Huang, Y.; Li, J.X.; Liu, G.Y. Response surface optimization based on freeze-thaw cycle pretreatment of poplar wood dyeing effect. Wood Res. 2023, 68, 293–305. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, N.; Guan, H.Y. Experimental and numerical study on methods of testing withdrawal resistance of mortise-and-tenon joint for wood products. Forests 2020, 11, 280. [Google Scholar] [CrossRef]
- Hu, W.G.; Li, S.; Liu, Y. Vibrational characteristics of four wood species commonly used in wood products. Bioresources 2021, 16, 7101. [Google Scholar] [CrossRef]
- Gu, Y.T.; Zhang, J.L. Tensile properties of natural and synthetic rattan strips used as furniture woven materials. Forests 2020, 11, 1299. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Xu, W. Influence of cell characteristics on the construction of structural color layers on wood surfaces. Forests 2024, 15, 676. [Google Scholar] [CrossRef]
- Brito, A.F.; Calonego, F.W.; Bond, B.H.; Severo, E.T.D. Color changes, EMC and biological resistance of thermally modified yellow poplar. Wood Fiber Sci. 2018, 50, 439–446. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Y.; Xu, W.; Liu, Y. The influences of selected factors on bending moment capacity of case furniture joints. Appl. Sci. 2024, 14, 10044. [Google Scholar] [CrossRef]
- Yu, R.; Liu, Y.; Konukcu, C.A.; Hu, W. A method of simulating seat load for numerical analysis of wood chair structure. Wood Res-Slovakia. 2024, 69, 432–444. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R.; Yang, P. Characterizing roughness of wooden mortise and tenon considering effects of measured position and assembly condition. Forests 2024, 15, 1584. [Google Scholar] [CrossRef]
- Althaqafi, K.A.; Satterthwaite, J.; AlShabib, A.; Silikas, N. Synthesis and characterisation of microcapsules for self-healing dental resin composites. BMC Oral Health 2024, 24, 109. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Yan, X.X.; Wu, Z.H. Application and prospect of self-healing microcapsules in surface coating of wood. Colloids Interface Sci. Commun. 2023, 56, 100736. [Google Scholar] [CrossRef]
- Aguirresarobe, R.H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J.M.; Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362. [Google Scholar] [CrossRef]
- Hu, W.; Luo, M.; Yu, R.; Zhao, Y. Effects of the selected factors on cyclic load performance of T-shaped mortise-and-tenon furniture joints. Wood Mater. Sci. Eng. 2024, 18, 1–10. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R. Study on the strength mechanism of the wooden round-end mortise-and-tenon joint using the digital image correlation method. Holzforschung 2024, 78, 519–530. [Google Scholar] [CrossRef]
- Hu, W.; Fu, W.; Zhao, Y. Optimal design of the traditional Chinese wood furniture joint based on experimental and numerical method. Wood Res.-Slovakia. 2024, 69, 50–59. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Kasal, A.; Erdil, Y.Z. The state of the art of biomechanics applied in ergonomic furniture design. Appl. Sci. 2023, 13, 12120. [Google Scholar] [CrossRef]
- Zhou, J.C.; Xu, W. Optimizing the interface compatibility of transparent wood for green phase-change thermal storage. Wood Sci. Technol. 2025, 59, 45. [Google Scholar] [CrossRef]
- Wang, G.K.; Li, X.L.; Xiong, X.Q.; Wang, S.Q. Optimization of drilling processes in panel furniture manufacturing: A case study. PLoS ONE 2025, 20, e0318667. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.Y.; Wang, T.Y.; Chu, Q.; Wang, X.W. Fused deposition 3D printing of bonsai tree guiding mold based on acrylonitrile-butadiene-styrene copolymer. Bioresources 2024, 19, 5839. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Li, J.; Fan, H.J.; Xiang, J.; Wang, L.; Yan, J. Effect of mechanical properties on the self-healing behavior of waterborne polyurethane coatings. J. Appl. Polym. Sci. 2022, 139, 52364. [Google Scholar] [CrossRef]
- Samadzadeh, M.; Boura, S.H.; Peikari, M.; Ashrafi, A.; Kasiriha, M. Tung oil: An autonomous repairing agent for self-healing epoxy coatings. Prog. Org. Coat. 2011, 70, 383–387. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.Y.; Zhang, C.Y. Effect of Corrected Extrusion Flow Rate on Wall Thickness Error of MEAM Thin-walled Model. Mater. Plast. 2025, 62, 78–85. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.Y.; Wang, T.Y.; Wang, X.W.; Chu, Q. Effect of Optimised Infill Parameters on the Tensile Properties of MEX Co-polyester Models. Mater. Plast. 2024, 61, 129–136. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.Y.; Wang, T.Y.; Wang, X.W. Additive Manufacturing of Furniture Corner Guards Based on Thermoplastic Polyurethane Filament. Bioresources 2025, 20, 5398–5406. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Effect of paint process on the performance of modified poplar wood antique. Coatings 2021, 11, 1174. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Influence of the bottom color modification and material color modification process on the performance of modified poplar. Coatings 2021, 11, 660. [Google Scholar] [CrossRef]
- Xu, W.; Fang, X.Y.; Han, J.T.; Wu, Z.H.; Zhang, J.L. Effect of coating thickness on sound absorption property of four wood species commonly used for piano soundboards. Wood Fiber Sci. 2020, 52, 28–43. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Effect of sanding processes on the surface properties of modified poplar coated by primer compared with mahogany. Coatings 2020, 10, 856. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.M.; Shehzad, H.; Farooqi, Z.H.; Sharif, A.; Ahmed, E.; Habiba, U.; Qaisar, F.; Noor-E-Fatima; Begum, R.; et al. Innovative free radical induced synthesis of WO3-doped diethyl malonate grafted chitosan encapsulated with phosphorylated alginate matrix for UO22+ adsorption: Parameters optimisation through response surface methodology. Separation Purif. Technol. 2025, 353, 128455. [Google Scholar] [CrossRef]
- Baiocco, D.; Preece, J.A.; Zhang, Z.B. Encapsulation of hexylsalicylate in an animal-free chitosan-gum Arabic shell by complex coacervation. Colloid Surf. Physicochem. Eng. Asp. 2021, 625, 126861. [Google Scholar] [CrossRef]
- Qi, L.F.; Xu, Z.R.; Jiang, X.; Hu, C.H.; Zou, X.F. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.Q.; Chen, Y.; Wang, Q.; Zhao, X.H.; Yang, H.Y.; Gong, F.; Guo, H. Preparation and antimicrobial activity of pectin-chitosan embedding nisin microcapsules. Eur. Polym. J. 2021, 157, 110676. [Google Scholar] [CrossRef]
- Cots, A.; Camacho, N.M.; Palma, S.D.; Alustiza, F.; Pedraza, L.; Bonino, F.; Carreño, J.; Bracamonte, C.F.; Acevedo, D.; Bozzo, A.; et al. Chitosan-alginate microcapsules: A strategy for improving stability and antibacterial potential of bovine Lactoferrin. Int. J. Biol. Macromol. 2025, 307, 141870. [Google Scholar] [CrossRef] [PubMed]
- Beach, M.; Davey, T.; Subramanian, P.; Such, G. Self-healing organic coatings–Fundamental chemistry to commercial application. Prog. Org. Coat. 2023, 183, 107759. [Google Scholar] [CrossRef]
- Zeng, X.T.; Guo, H.; Liu, H.L.; Liu, C.; Fang, B.; Li, Y.Z.; Jiang, Z.L.; Liu, J. Self-healing performance and anti-corrosion mechanism of microcapsule-containing epoxy coatings under deep-sea environment. Prog. Org. Coat. 2025, 203, 109176. [Google Scholar] [CrossRef]
- Ma, Y.X.; Liu, J.T.; Zhang, Y.R.; Ge, Y.; Wu, R.; Song, X.H.; Zhang, P.; Wu, J. Mechanical behavior and self-healing mechanism of polyurea-based double-walled microcapsule/epoxy composite films. Prog. Org. Coat. 2021, 157, 106283. [Google Scholar] [CrossRef]
- Lim, Y.J.; Song, Y.K.; Kim, D.M.; Chung, C.M. Preparation of isophorone diisocyanate-loaded microcapsules and their application to self-healing protective coating. Polymers 2015, 39, 56–63. [Google Scholar]
- Liu, W.; Zou, S.Q.; Pan, J.Y.; Zhang, Z.Q.; Chen, J.K.; Liu, B.W.; Yue, Z.W. Carbon nanotubes/carbon black reinforced epoxy resin microcapsule-based cement composites with combined self-healing and self-sensing capacities. J. Build. Eng. 2025, 103, 112171. [Google Scholar] [CrossRef]
- Ding, F.Y.; Li, H.B.; Du, Y.M.; Shi, X.W. Recent advances in chitosan-based self-healing materials. Res. Chem. Intermed. 2018, 44, 4827–4840. [Google Scholar] [CrossRef]
- Zhang, L.C.; Wu, K.Y.; Sun, G.Q.; Liu, R.; Luo, J. Investigation of particle size effect on the performance of micro/nano capsules and composite coatings. Colloid Surf. Physicochem. Eng. Asp. 2023, 675, 132020. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yan, X.X. Preparation and self-repairing properties of MF-coated shellac water-based microcapsules. Coatings 2020, 10, 778. [Google Scholar] [CrossRef]
- Liu, J.G.; Chen, F.Y.; Zhang, Q.S.; Xing, X.; Cui, G. Study on preparation and performance of acid pH-responsive intelligent self-healing coating. Polymers 2024, 16, 2473. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.T.; Wang, Y.T.; Dai, J.; Yang, Z.Y.; Yang, Q.L. The study on preparation, stability and anti-allergic efficacy of phycocyanin microcapsules. Food Res. Int. 2025, 201, 115530. [Google Scholar] [CrossRef] [PubMed]
- GB/T 4893.6-2013; Physical and chemical property test of furniture surface paint film Part 6 Gloss determination method. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- ASTM D523-25; Standard Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 2025.
- ISO 11664-4:2019; * Colorimetry—Part 4: CIE 1976 L*a*b* Colour Space*. International Organization for Standardization: Geneva, Switzerland, 2019.
- GB/T 6739-2022; Determination of paint film hardness by the pencil method for color paints and varnishes. Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- GB/T 4893.4-2023; Physical and chemical property test of furniture surface paint film Part 4: Adhesion cross-cutting method. Standardization Administration of the People’s Republic of China: Beijing, China, 2023.
- GB/T 4893.9-2013; Physical and chemical property test of furniture surface paint film Part 9: Impact resistance method. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Fayyad, E.M.; Almaadeed, M.A.; Jones, A. Encapsulation of tung oil for self-healing coatings in corrosion applications. Sci. Adv. Mater. 2015, 7, 2628–2638. [Google Scholar] [CrossRef]
- Li, H.Y.; Cui, Y.X.; Li, Z.K.; Zhu, Y.J.; Wang, H.Y. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. Prog. Org. Coat. 2018, 115, 164–171. [Google Scholar] [CrossRef]
- Paolini, N.A.; Neto, A.G.C.; Pellanda, A.C.; Jorge, A.R.D.C.; Soares, B.D.; Floriano, J.B.; Berton, M.A.C.; Vijayan, P.P.; Thomas, S. Evaluation of Corrosion Protection of Self-Healing Coatings Containing Tung and Copaiba Oil Microcapsules. Int. J. Polym. Sci. 2021, 2021, 6650499. [Google Scholar] [CrossRef]
- Deng, J.Z.; Yan, X.X. Preparation of Tung Oil Microcapsules Coated with Chitosan–Arabic Gum and Its Effect on the Properties of UV Coating. Polymers 2025, 17, 1985. [Google Scholar] [CrossRef]
- Veeramani, N.; Samikannu, R.; Deshpande, A.P.; Varghese, S.; Moses, V. Effects of polymeric microcapsules on self-healing composites reinforced with carbon fibers: A comparative study. Int. Polym. Process. 2023, 38, 483–495. [Google Scholar] [CrossRef]
- Yan, X.X.; Zhao, W.T.; Wang, L. Mechanism of thermochromic and self-repairing of waterborne wood coatings by synergistic action of waterborne acrylic microcapsules and fluorane microcapsules. Polymers 2021, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.G.; Zhou, Y.H.; Hu, L.H. Novel biobased materials from tung oil-based monomer and tung oil-modified unsaturated polyester. Adv. Mater. Res. 2012, 581, 121–124. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, J.; Zhang, L.Z. A photothermal self-healing superhydrophobic coating with anti-frosting and anti-corrosion properties. Prog. Org. Coat. 2023, 180, 107569. [Google Scholar] [CrossRef]
Name | Molecular Formula | CAS No. | Manufacturer |
---|---|---|---|
Chitosan | (C6H11NO4)n | 9012-76-4 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Gum Arabic Powder | C12H36 | 9000-01-5 | Tianjin Zhonglian Chemical Reagent Co., Ltd., Tianjin, China |
Acetic Acid | C2H4O2 | 64-19-7 | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Tung Oil | C65H100O14 | Shanghai Shenmeng Home Furnishing Co., Ltd., Shanghai, China | |
Tannic Acid | C76H52O46 | 1401-55-4 | Tianjin Zhonglian Chemical Reagent Co., Ltd., Tianjin, China |
UV primer | Jiangsu Haidian Technology Co., Ltd., Kunshan, China | ||
UV topcoat | Jiangsu Haidian Technology Co., Ltd., Kunshan, China |
Name | Model Number | Manufacturer |
---|---|---|
Collector-type constant temperature heating magnetic stirrer | DF-101Z | Shanghai Yixin Scientific Instrument Co., Ltd., Shanghai, China |
Ultrasonic emulsifying disperser | BILONG-500 | Shanghai Biron Instrument Co., Ltd., Shanghai, China |
Small spray dryer | JA-PWGZ100 | Shenyang Jing’ao Instrument Technology Co., Ltd., Shenyang, China |
Air-drying oven | DHG-9240A | Shanghai Aojin Instrument Manufacturing Co., Ltd., Shanghai, China |
UV curing machine | 620# | Huzhou Tongxu Machinery Equipment Co., Ltd., Huzhou, China |
Optical microscope | AX-10 | Carl Zeiss Co., Ltd., Baden-Württemberg, Germany |
Fourier infrared spectrometer | VERTEX 80V | Bruker Technology Co., Ltd., Hamburg, Germany |
Scanning electron microscope | QUANTA-200 | Thermo Fisher Scientific Co., Ltd., Waltham, Massachusetts, USA |
Roughness tester | J8-4C | Shanghai Tai Ming Optical Instrument Co., Ltd., Shanghai, China |
Glossiness instrument | HG268 | Shenzhen SUNSHI Technology Co., Ltd., Shenzhen, China |
Spectrocolorimeter | CR7 | Shenzhen SUNSHI Technology Co., Ltd., Shenzhen, China |
Ultraviolet spectrophotometer | U-3900 | Hitachi Instrument (Suzhou) Co., Ltd., Suzhou, China |
Pencil hardness tester | HT-6510P | Quzhou Aipu Measuring Instrument Co., Ltd., Quzhou, China |
Paint shocker | QCJ-40 | Quzhou Aipu Measuring Instrument Co., Ltd., Quzhou, China |
Paint adhesion tester | QFH-A | Quzhou Aipu Measuring Instrument Co., Ltd., Quzhou, China |
Samples | Gum Arabic Powder (g) | Deionized Water for Gum Powder (g) | Chitosan (g) | 1% Acetic Acid Solution (g) | Tung Oil (g) | Tannic Acid (g) | Tannic Acid with Deionized Water (g) | Spray Drying Temperature (°C) |
---|---|---|---|---|---|---|---|---|
1 | 3.20 | 76.80 | 0.80 | 79.20 | 2.00 | 0.02 | 9.98 | 120 |
2 | 3.20 | 76.80 | 0.80 | 79.20 | 2.00 | 0.02 | 9.98 | 130 |
Sample | Type of Microcapsules | Microencapsules Content (%) | UV Primer Mass (g) | UV Primer (g/m2) | UV Topcoat Mass (g) | UV Topcoat (g/m2) | Microcapsules Mass (g) | Microcapsules (g/m2) |
---|---|---|---|---|---|---|---|---|
0 | No microcapsules added | 0 | 0.800 | 320 | 0.800 | 320 | 0.000 | 0 |
1 | Microcapsules 1 | 3 | 0.800 | 320 | 0.776 | 310.4 | 0.024 | 9.6 |
2 | 6 | 0.800 | 320 | 0.752 | 300.8 | 0.048 | 19.2 | |
3 | 9 | 0.800 | 320 | 0.728 | 291.2 | 0.072 | 28.8 | |
4 | 12 | 0.800 | 320 | 0.704 | 281.6 | 0.096 | 38.4 | |
5 | 15 | 0.800 | 320 | 0.680 | 272.0 | 0.120 | 48.0 | |
6 | Microcapsules 2 | 3 | 0.800 | 320 | 0.776 | 310.4 | 0.024 | 9.6 |
7 | 6 | 0.800 | 320 | 0.752 | 300.8 | 0.048 | 19.2 | |
8 | 9 | 0.800 | 320 | 0.728 | 291.2 | 0.072 | 28.8 | |
9 | 12 | 0.800 | 320 | 0.704 | 281.6 | 0.096 | 38.4 | |
10 | 15 | 0.800 | 320 | 0.680 | 272.0 | 0.120 | 48.0 |
Sample | Type of Microcapsules | Content of Microcapsules (%) | Reflectivity (%) |
---|---|---|---|
0 | No microcapsules added | 0 | 44.96 |
1 | Microcapsules 1 | 3 | 45.08 |
2 | 6 | 44.98 | |
3 | 9 | 41.68 | |
4 | 12 | 41.27 | |
5 | 15 | 42.45 | |
6 | Microcapsules 2 | 3 | 46.40 |
7 | 6 | 45.25 | |
8 | 9 | 40.28 | |
9 | 12 | 42.75 | |
10 | 15 | 39.20 |
Sample | Types of Microcapsules | Content of Microcapsules (%) | Colorimetric Value | Color Difference Value ΔE | ||
---|---|---|---|---|---|---|
Luminance Value L | Red and Green Values a | Yellow and Blue Values b | ||||
0 | No microcapsules added | 0 | 62.35 | 15.60 | 24.15 | |
1 | Microcapsules 1 | 3 | 61.35 | 13.35 | 24.00 | 2.47 |
2 | 6 | 60.25 | 14.50 | 25.75 | 2.86 | |
3 | 9 | 60.55 | 13.15 | 26.25 | 3.69 | |
4 | 12 | 59.95 | 12.90 | 28.15 | 5.39 | |
5 | 15 | 58.20 | 11.15 | 29.75 | 8.27 | |
6 | Microcapsules 2 | 3 | 61.93 | 14.21 | 24.55 | 1.52 |
7 | 6 | 61.62 | 15.20 | 25.16 | 1.31 | |
8 | 9 | 61.05 | 14.18 | 27.15 | 3.56 | |
9 | 12 | 59.15 | 12.83 | 28.65 | 6.19 | |
0 | 15 | 58.91 | 11.39 | 30.49 | 8.35 |
Sample | Types of Microcapsules | Content of Microcapsules (%) | Glossiness (GU) | Loss of Light (%) | ||
---|---|---|---|---|---|---|
The Angle of Incidence Is 20° | The Angle of Incidence Is 60° | The Angle of Incidence Is 85° | ||||
0 | No microcapsules added | 0 | 22.10 | 57.30 | 58.50 | |
1 | Microcapsules 1 | 3 | 16.30 | 50.60 | 50.40 | 11.69 |
2 | 6 | 15.90 | 45.60 | 48.00 | 20.42 | |
3 | 9 | 14.40 | 45.10 | 32.50 | 21.29 | |
4 | 12 | 11.10 | 46.00 | 36.50 | 19.72 | |
5 | 15 | 10.70 | 39.20 | 25.30 | 31.59 | |
6 | Microcapsules 2 | 3 | 17.20 | 50.40 | 50.20 | 12.04 |
7 | 6 | 16.20 | 49.60 | 54.40 | 13.44 | |
8 | 9 | 13.80 | 39.50 | 23.70 | 31.06 | |
9 | 12 | 12.10 | 46.30 | 28.40 | 19.20 | |
10 | 15 | 9.80 | 37.10 | 23.50 | 35.25 |
Sample | Types of Microcapsules | Content of Microcapsules (%) | Roughness (μm) |
---|---|---|---|
0 | No microcapsules added | 0 | 0.42 |
1 | Microcapsules 1 | 3 | 0.26 |
2 | 6 | 0.56 | |
3 | 9 | 0.81 | |
4 | 12 | 1.07 | |
5 | 15 | 1.79 | |
6 | Microcapsules 2 | 3 | 0.47 |
7 | 6 | 0.71 | |
8 | 9 | 1.20 | |
9 | 12 | 1.38 | |
10 | 15 | 1.47 |
Sample | Types of Microcapsules | Content of Microcapsules (%) | Impact Resistance Grade (Grade) | Adhesion Grade (Grade) | Hardness |
---|---|---|---|---|---|
0 | No microcapsules added | 0 | 5 | 1 | 4H |
1 | Microcapsules 1 | 3 | 4 | 2 | 4H |
2 | 6 | 4 | 2 | 4H | |
3 | 9 | 3 | 2 | 3H | |
4 | 12 | 3 | 3 | 2H | |
5 | 15 | 3 | 3 | 2H | |
6 | Microcapsules 2 | 3 | 4 | 1 | 4H |
7 | 6 | 4 | 2 | 4H | |
8 | 9 | 4 | 2 | 4H | |
9 | 12 | 3 | 3 | 2H | |
10 | 15 | 3 | 3 | 2H |
Sample | Types of Microcapsules | Content of Microcapsules (%) | Scratch Width Before Healing (μm) | Scratch Width After Healing (μm) | Self-Healing Rate (%) |
---|---|---|---|---|---|
0 | No microcapsules added | 0 | 12.99 | 12.99 | |
1 | Microcapsules 1 | 3 | 14.02 | 12.65 | 9.77 |
2 | 6 | 10.10 | 8.24 | 18.42 | |
3 | 9 | 12.33 | 10.51 | 14.76 | |
4 | 12 | 17.38 | 14.81 | 14.79 | |
5 | 15 | 14.07 | 12.62 | 10.31 | |
6 | Microcapsules 2 | 3 | 9.10 | 8.75 | 3.85 |
7 | 6 | 9.51 | 7.36 | 22.61 | |
8 | 9 | 13.38 | 9.19 | 31.32 | |
9 | 12 | 13.18 | 11.81 | 10.39 | |
10 | 15 | 9.80 | 8.76 | 10.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Deng, J.; Yan, X. Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface. Coatings 2025, 15, 873. https://doi.org/10.3390/coatings15080873
Dong Y, Deng J, Yan X. Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface. Coatings. 2025; 15(8):873. https://doi.org/10.3390/coatings15080873
Chicago/Turabian StyleDong, Yang, Jinzhe Deng, and Xiaoxing Yan. 2025. "Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface" Coatings 15, no. 8: 873. https://doi.org/10.3390/coatings15080873
APA StyleDong, Y., Deng, J., & Yan, X. (2025). Effect of Chitosan Gum Arabic-Coated Tung Oil Microcapsules on the Performance of UV Coating on Cherry Wood Surface. Coatings, 15(8), 873. https://doi.org/10.3390/coatings15080873