Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = coSNP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 810 KiB  
Article
Association Analysis Between Ischemic Stroke Risk Single Nucleotide Polymorphisms and Alzheimer’s Disease
by Wei Dong, Wei Wang and Mingxuan Li
Bioengineering 2025, 12(8), 804; https://doi.org/10.3390/bioengineering12080804 - 26 Jul 2025
Viewed by 207
Abstract
Alzheimer’s disease (AD) and ischemic stroke (IS) are prevalent neurological disorders that frequently co-occur in the same individuals. Recent studies have demonstrated that AD and IS share several common risk factors and pathogenic elements, including an overlapping genomic architecture. However, the relationship between [...] Read more.
Alzheimer’s disease (AD) and ischemic stroke (IS) are prevalent neurological disorders that frequently co-occur in the same individuals. Recent studies have demonstrated that AD and IS share several common risk factors and pathogenic elements, including an overlapping genomic architecture. However, the relationship between IS risk gene polymorphisms and AD has been less extensively studied. We aimed at determining whether IS risk gene polymorphisms were associated with the risk of AD and the severity of AD in AD patients. We utilized data of AD patients and normal controls (NCs) sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. IS risk single nucleotide polymorphisms (SNPs) were identified through the most recent and largest IS genome-wide association study (GWAS) meta-analysis. Subsequently, we conducted SNP-based association analysis of IS-risk SNPs with the risk of AD, along with amyloid, tau, and neuroimaging for AD. The generalized multifactor dimensionality reduction (GMDR) model was used to assess the interactions among IS-risk SNPs and apolipoprotein E (ApoE) ε4. Protein–protein interactions (PPIs) of the IS-risk genes product and APOE were explored using the STRING database. Seven IS-risk SNPs were involved in the study. Five SNPs were found to be associated with at least one measurement of cerebrospinal fluid (CSF) levels of amyloid-beta 1–42 (Aβ42), total tau (t-tau), and phosphorylated tau 181 (p-tau181), as well as the volumes of the hippocampus, whole brain, entorhinal cortex, and mid-temporal regions. After multiple testing corrections, we found that T allele of rs1487504 contributed to an increased risk of AD in non-ApoE ε4 carriers. The combination of rs1487504 and ApoE ε4 emerged as the optimal two-factor model, and its interaction was significantly related to the risk of AD. Additionally, C allele of rs880315 was significantly associated with elevated levels of CSF Aβ42 in AD patients, and A allele of rs10774625 was significantly related to a reduction in the volume of the entorhinal cortex in AD patients. This study found that IS risk SNPs were associated with both the risk of AD and AD major indicators in the ADNI cohort. These findings elucidated the role of IS in AD from a genetic perspective and provided an innovative approach to predict AD through IS-risk SNPs. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

16 pages, 1234 KiB  
Article
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 Proteus mirabilis
by Angeliki Mavroidi, Elisavet Froukala, Nick Spanakis, Aikaterini Michelaki, Maria Orfanidou, Vasiliki Koumaki and Athanasios Tsakris
Antibiotics 2025, 14(8), 750; https://doi.org/10.3390/antibiotics14080750 - 25 Jul 2025
Viewed by 227
Abstract
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. [...] Read more.
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. Methods: Characterization of Pm GR-1 was performed by the Vitek® Compact and Mass Spectrometry systems, antimicrobial susceptibility testing, detection of beta-lactamases, multilocus-sequence typing (MLST), and whole-genome sequencing (WGS). In silico prediction of mobile genetic elements (MGEs), genomic islands (GIs), antimicrobial resistance genes (ARGs) and virulence factors (VFs), and phylogenetic, core-genome SNP and comparative genomics analyses were executed using bioinformatic tools. Results: Pm GR-1 was isolated from a urine sample of an outpatient in a Greek hospital. It exhibited a multidrug-resistant phenotype, being susceptible only to amikacin and ceftazidime/avibactam. It co-carried several beta-lactamase genes on the chromosome (blaOXA-48, blaCTX-M-14, blaTEM-1) and a plasmid (blaTEM-2) and several other ARGs, but also mutations associated with quinolone resistance in the DNA gyrase and topoisomerase IV subunits. It belonged to the international clone ST135 that has also been detected among OXA-48-producing P. mirabilis strains from Germany and the USA. Pm GR-1 was genetically related to those from Germany, sharing highly similar MGEs, GIs, ARGs and VFs, including the chromosomal blaOXA-48 genetic structure, the O-antigen locus, the flagella locus, the MR/P fimbriae operon, and the urease gene cluster. Conclusions: To our knowledge, this is the first report from Greece of a blaOXA-48-possessing P. mirabilis strain. The emergence of blaOXA-48 among P. mirabilis strains of the international clone ST135 in different geographical regions is worrying. Close monitoring of these strains is required in One Health settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
by Neven Sarhan, Mona F. Schaalan, Azza A. K. El-Sheikh and Bassem Zarif
Pharmaceutics 2025, 17(8), 959; https://doi.org/10.3390/pharmaceutics17080959 - 24 Jul 2025
Viewed by 288
Abstract
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability [...] Read more.
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability in response to dapagliflozin underscores the role of pharmacogenetics in optimizing treatment efficacy. This study investigates the influence of genetic polymorphisms on renal outcomes in HFrEF patients treated with dapagliflozin, focusing on variations in genes such as SLC5A2, UMOD, KCNJ11, and ACE. Methods: This prospective, observational cohort study was conducted at the National Heart Institute, Cairo, Egypt, enrolling 200 patients with HFrEF. Genotyping of selected single nucleotide polymorphisms (SNPs) was performed using TaqMan™ assays. Renal function, including estimated glomerular filtration rate (eGFR), Kidney Injury Molecule-1 (KIM-1), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels, was assessed at baseline and after six months of dapagliflozin therapy. Results: Significant associations were found between genetic variants and renal outcomes. Patients with AA genotype of rs3813008 (SLC5A2) exhibited the greatest improvement in eGFR (+7.2 mL ± 6.5, p = 0.004) and reductions in KIM-1 (−0.13 pg/mL ± 0.49, p < 0.0001) and NGAL (−6.1 pg/mL ± 15.4, p < 0.0001). Similarly, rs12917707 (UMOD) TT genotypes showed improved renal function. However, rs5219 (KCNJ11) showed no significant impact on renal outcomes. Conclusions: Pharmacogenetic variations influenced renal response to dapagliflozin in HFrEF patients, particularly in SLC5A2 and UMOD genes. These findings highlighted the potential of personalized medicine in optimizing therapy for HFrEF patients with renal complications. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

16 pages, 7336 KiB  
Article
Identification of Quality-Related Genomic Regions and Candidate Genes in Silage Maize by Combining GWAS and Meta-Analysis
by Yantian Lu, Yongfu Ding, Can Xu, Shubin Chen, Chunlan Xia, Li Zhang, Zhiqing Sang and Zhanqin Zhang
Plants 2025, 14(15), 2250; https://doi.org/10.3390/plants14152250 - 22 Jul 2025
Viewed by 306
Abstract
Enhancing quality traits is a primary objective in silage maize breeding programs. The use of genome-wide association studies (GWAS) for quality traits, in combination with the integration of genetic resources, presents an opportunity to identify crucial genomic regions and candidate genes influencing silage [...] Read more.
Enhancing quality traits is a primary objective in silage maize breeding programs. The use of genome-wide association studies (GWAS) for quality traits, in combination with the integration of genetic resources, presents an opportunity to identify crucial genomic regions and candidate genes influencing silage maize quality. In this study, a GWAS was conducted on 580 inbred lines of silage maize, and a meta-analysis was performed on 477 quantitative trait loci (QTLs) from 34 studies. The analysis identified 27 significant single nucleotide polymorphisms (SNPs) and 87 consensus QTLs (cQTLs), with 7 cQTLs associated with multiple quality traits. By integrating the SNPs identified through association mapping, one SNP was found to overlap with the cQTL interval related to crude protein, neutral detergent fiber, and starch content. Furthermore, enrichment analysis predicted 300 and 5669 candidate genes through GWAS and meta-analysis, respectively, highlighting pathways such as cellular metabolism, the biosynthesis of secondary metabolites, ribosome function, carbon metabolism, protein processing in the endoplasmic reticulum, and amino acid biosynthesis. The examination of 13 candidate genes from three co-located regions revealed Zm00001d050977 as a cytochrome P450 family gene, while the other 2 genes primarily encode proteins involved in stress responses and other biological pathways. In conclusion, this research presents a methodology combining GWAS and meta-analysis to identify genomic regions and potential genes influencing quality traits in silage maize. These findings serve as a foundation for the identification of significant QTLs and candidate genes crucial for improving silage maize quality. Full article
Show Figures

Figure 1

19 pages, 2517 KiB  
Article
In Silico Analysis of Post-COVID-19 Condition (PCC) Associated SNP rs9367106 Predicts the Molecular Basis of Abnormalities in the Lungs and Brain Functions
by Amit K. Maiti
Int. J. Mol. Sci. 2025, 26(14), 6680; https://doi.org/10.3390/ijms26146680 - 11 Jul 2025
Viewed by 407
Abstract
Long- or post-COVID-19 syndrome, which is also designated by WHO as Post COVID-19 Condition (PCC), is characterized by the persistent symptoms that remain after recovery from SARS-CoV-2 infection. A worldwide consortium of Long COVID-19 Host Genetics Initiative (Long COVID-19 HGI) identified an SNP [...] Read more.
Long- or post-COVID-19 syndrome, which is also designated by WHO as Post COVID-19 Condition (PCC), is characterized by the persistent symptoms that remain after recovery from SARS-CoV-2 infection. A worldwide consortium of Long COVID-19 Host Genetics Initiative (Long COVID-19 HGI) identified an SNP rs9367106 (G>C; chr6:41,515,652, GRCh38, p = 1.76 × 10−10, OR = 1.63, 95% CI: 1.40–1.89) that is associated with PCC. Unraveling the functional significance of this SNP is of prime importance to understanding the development of the PCC phenotypes and their therapy. Here, in Silico, I explored how the risk allele of this SNP alters the functional mechanisms and molecular pathways leading to the development of PCC phenotypes. Bioinformatic methods include physical interactions using HI-C and Chia-PET analysis, Transcription Factors (TFs) binding ability, RNA structure modeling, epigenetic, and pathway analysis. This SNP resides within two long RNA genes, LINC01276 and FOXP4-AS1, and is located at ~31 kb upstream of a transcription factor FOXP4. This DNA region, including this SNP, physically interacts with FOXP4-AS1 and FOXP4, implying that this regulatory SNP could alter the normal cellular function of FOXP4-AS1 and FOXP4. Furthermore, rs9367106 is in eQTL with the FOXP4 gene in lung tissue. rs9367106 carrying DNA sequences act as distant enhancers and bind with several transcription factors (TFs) including YY1, PPAR-α, IK-1, GR-α, and AP2αA. The G>C transition extensively modifies the RNA structure that may affect the TF bindings and enhancer functions to alter the interactions and functions of these RNA molecules. This SNP also includes an ALU/SINE sequence and alteration of which by the G>C transition may prevent IFIH1/MDA5 activation, leading to suppression of host innate immune responses. LINC01276 targets the MED20 gene that expresses mostly in brain tissues, associated with sleep disorders and basal ganglia abnormalities similar to some of the symptoms of PCC phenotypes. Taken together, G>C transition of rs9367601 may likely alter the function of all three genes to explain the molecular basis of developing the long-term symptomatic abnormalities in the lungs and brain observed after COVID-19 recovery. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
Show Figures

Figure 1

18 pages, 24095 KiB  
Article
Genome-Wide Association Study of COVID-19 Breakthrough Infections and Genetic Overlap with Other Diseases: A Study of the UK Biobank
by Yaning Feng, Kenneth Chi-Yin Wong, Wai Kai Tsui, Ruoyu Zhang, Yong Xiang and Hon-Cheong So
Int. J. Mol. Sci. 2025, 26(13), 6441; https://doi.org/10.3390/ijms26136441 - 4 Jul 2025
Viewed by 430
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to substantial health and financial burdens worldwide, and vaccines provide hope for reducing the burden of this pandemic. However, vaccinated people remain at risk for SARS-CoV-2 infection. Genome-wide association studies (GWASs) may identify potential genetic [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has led to substantial health and financial burdens worldwide, and vaccines provide hope for reducing the burden of this pandemic. However, vaccinated people remain at risk for SARS-CoV-2 infection. Genome-wide association studies (GWASs) may identify potential genetic factors involved in the development of COVID-19 breakthrough infections (BIs); however, very few or no GWASs have been conducted for COVID-19 BI thus far. We conducted a GWAS and detailed bioinformatics analysis on COVID-19 BIs in a European population via the UK Biobank (UKBB). We conducted a series of analyses at different levels, including SNP-based, gene-based, pathway, and transcriptome-wide association analyses, to investigate genetic factors associated with COVID-19 BIs and hospitalized infections. The polygenic risk score (PRS) and Hoeffding’s test were performed to reveal the genetic relationships between BIs and other medical conditions. Two independent loci (LD-clumped at r2 = 0.01) reached genome-wide significance (p < 5 × 10−8), including rs36170929, which mapped to LOC102725191/VWDE, and rs28645263, which mapped to RETREG1. A pathway enrichment analysis highlighted pathways such as viral myocarditis, Rho-selective guanine exchange factor AKAP13 signaling, and lipid metabolism. The PRS analyses revealed significant genetic overlap between COVID-19 BIs and heart failure and between HbA1c and type 1 diabetes. Genetic dependence was also observed between COVID-19 BIs and asthma, lung abnormalities, schizophrenia, and type 1 diabetes on the basis of Hoeffding’s test. This GWAS revealed two significant loci that may be associated with COVID-19 BIs and a number of genes and pathways that may be involved in BIs. Genetic overlap with other diseases was identified. Further studies are warranted to replicate these findings and elucidate the mechanisms involved. Full article
Show Figures

Figure 1

16 pages, 998 KiB  
Article
Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics
by Marine Combe, Théo Deremarque, Justina Givens and Rodolphe Elie Gozlan
Fishes 2025, 10(6), 297; https://doi.org/10.3390/fishes10060297 - 19 Jun 2025
Viewed by 387
Abstract
Invasive species often defy theoretical expectations, successfully establishing and spreading despite reduced propagule pressure and limited genetic diversity. What genomic mechanisms underpin this paradox? How do adaptive processes and host–pathogen interactions shape invasion outcomes? And which genes drive resistance and modulate pathogen virulence? [...] Read more.
Invasive species often defy theoretical expectations, successfully establishing and spreading despite reduced propagule pressure and limited genetic diversity. What genomic mechanisms underpin this paradox? How do adaptive processes and host–pathogen interactions shape invasion outcomes? And which genes drive resistance and modulate pathogen virulence? Here, we address these questions using a model of co-invasion: the Asian topmouth gudgeon (Pseudorasbora parva) and its fungal parasite the Rosette agent (Sphaerothecum destruens), a system with profound ecological and economic consequences. Here by (1) mapping the reads obtained by Illumina sequencing on a previously deposited P. parva genome from Germany, (2) identifying SNPs and (3) creating a consensus sequence, we generated the first whole genome of an invasive P. parva population in France and compared it to a German population to explore patterns of genetic diversity, local adaptation, and potential signatures of pathogen resistance. Despite historical bottlenecks, our results reveal unexpectedly high levels of genomic diversity between these invasive populations. We identify candidate loci linked to immune function and provide insights into the evolutionary dynamics of co-introduction. These findings offer a rare window into how invasive species maintain adaptability and how pathogens may co-evolve during range expansion. Beyond advancing our understanding of invasion biology, the genomic resources generated here pave the way for translational approaches, including the development of genome-editing strategies aimed at mitigating the impact of invasive species and their associated pathogens. This work marks a critical step toward unraveling the complex interplay between genetics, ecology, and evolution in biological invasions. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

15 pages, 1139 KiB  
Article
Outcome of Sleep Rehabilitation in Autistic Children with Sleep Disorders Is Linked to Melatonin Receptor Genes SNPs
by Elisabetta Bolognesi, Alessandra Carta, Franca Rosa Guerini, Stefano Sotgiu, Cristina Agliardi, Chiara Dettori, Milena Zanzottera and Mario Clerici
Int. J. Mol. Sci. 2025, 26(11), 5198; https://doi.org/10.3390/ijms26115198 - 28 May 2025
Viewed by 515
Abstract
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor [...] Read more.
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor genes MT1 and MT2 and ASD susceptibility, clinical severity and associated sleep problems. A total of 139 ASD children, 82 siblings, and 53 unrelated healthy controls, all of Sardinian ancestry, were studied; among them, 38 children with co-occurring sleep issues were assessed for the outcomes of a rehabilitative program, including behavioral therapy and sleep hygiene. The MT2 rs10830963 G allele is more prevalent in ASD children and their siblings compared to the healthy controls, while rs2119882 (MT1) and rs1562444 (MT2) are associated with DIMS, DA, and SHY. ASD Children carrying the rs2119882 T allele have higher scores for DIMS and DA compared to C allele carriers, and those carrying rs1562444 A allele have higher scores for SHY than G allele carriers. After rehabilitative treatment, homozygous TT carriers of rs2119882 showed less improvement in DIMS symptoms compared to CT and CC carriers. A similar result was observed for AA carriers of SNP rs1562444 about SHY. We may suggest that the MT1 and MT2 variants may serve as useful predictive genetic markers for the severity of sleep disorders in children with ASD, potentially informing the design of more targeted rehabilitative treatments. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

9 pages, 831 KiB  
Brief Report
Recurrent SARS-CoV-2 Infection Is Linked to the TLR7 rs179008 Variant and Related to Diminished Baseline T Cell Immunity
by Camilla Natália Oliveira Santos, Priscila Lima dos Santos, Angela Maria da Silva and Lucas Sousa Magalhães
Immuno 2025, 5(2), 17; https://doi.org/10.3390/immuno5020017 - 16 May 2025
Viewed by 648
Abstract
Recurrent COVID-19, defined as two or more distinct episodes, may reflect an impaired immune response to SARS-CoV-2. In this case–control study, we compared three groups: individuals with recurrent COVID-19, those with a single episode, and SARS-CoV-2-naïve controls. We genotyped six immune-related SNPs, including [...] Read more.
Recurrent COVID-19, defined as two or more distinct episodes, may reflect an impaired immune response to SARS-CoV-2. In this case–control study, we compared three groups: individuals with recurrent COVID-19, those with a single episode, and SARS-CoV-2-naïve controls. We genotyped six immune-related SNPs, including TLR7 rs179008, and measured CD4+ and CD8+ T cell responses to SARS-CoV-2 antigens using flow cytometry. The T allele of TLR7 rs179008, previously linked to reduced receptor expression, was significantly overrepresented in the recurrent COVID-19 cohort. At baseline, frequencies of IFN-γ+, IL-2+, and TNF-α+ cells among CD4+ and CD8+ T cells did not differ between groups. However, stratification by the rs179008 genotype revealed that T allele carriers displayed diminished IFN-γ production in both CD4+ and CD8+ T cells and reduced IL-2 production in CD4+ T cells. Following vaccination, T cell responses were comparable across all genotypes. The T allele of TLR7 rs179008 is associated with recurrent COVID-19 and may contribute to impaired T cell-mediated immunity. Further studies are warranted to elucidate the mechanistic role of TLR7 variation in SARS-CoV-2 reinfection risk. Full article
(This article belongs to the Section Infectious Immunology and Vaccines)
Show Figures

Figure 1

21 pages, 2546 KiB  
Article
Genome-Wide Association Studies and Candidate Genes for Egg Production Traits in Layers from an F2 Crossbred Population Produced Using Two Divergently Selected Chicken Breeds, Russian White and Cornish White
by Natalia A. Volkova, Michael N. Romanov, Alan Yu. Dzhagaev, Polina V. Larionova, Ludmila A. Volkova, Alexandra S. Abdelmanova, Anastasia N. Vetokh, Darren K. Griffin and Natalia A. Zinovieva
Genes 2025, 16(5), 583; https://doi.org/10.3390/genes16050583 - 15 May 2025
Viewed by 739
Abstract
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production [...] Read more.
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production traits in an F2 resource population of chickens (Gallus gallus). Methods: The examined F2 population was produced by crossing two divergently selected breeds with contrasting phenotypes for egg performance traits, namely Russian White (of higher egg production) and Cornish White (of lower egg production). Sampled birds (n = 142) were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. Results: In the course of the GWAS analysis, we were able to clarify significant associations with phenotypic traits of interest and economic value by using 47,432 SNPs after the genotype dataset was filtered. At the threshold p < 1.06 × 10−6, we found 23 prioritized candidate genes (PCGs) associated with egg weight at the age of 42–52 weeks (FGF14, GCK), duration of egg laying (CNTN4), egg laying cycle (SAMD12) and egg laying interval (PHF5A, AKR1B1, CALD1, ATP7B, PIK3R4, PTK2, PRKCE, FAT1, PCM1, CC2D2A, BMS1, SEMA6D, CDH13, SLIT3, ATP10B, ISCU, LRRC75A, LETM2, ANKRD24). Moreover, two SNPs were co-localized within the FGF14 gene. Conclusions: Based on our GWAS findings, the revealed SNPs and candidate genes can be used as genetic markers for egg weight and other performance characteristics in chickens to attain genetic enhancement in production and for further genomic selection. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

22 pages, 4238 KiB  
Article
Surviving Colonies of Pseudomonas aeruginosa Isolated In Vivo from Infected, Antibiotic-Treated Galleria mellonella Larvae Acquire an Antibiotic-Tolerant Phenotype
by Alex McCormack, Joanne K. Hobbs, Paul R. Johnston and Peter J. Coote
Antibiotics 2025, 14(5), 507; https://doi.org/10.3390/antibiotics14050507 - 15 May 2025
Viewed by 623
Abstract
Background: The aim of this work was to induce the formation of antibiotic-tolerant and/or persister cells in vivo using antibiotic therapy on Galleria mellonella larvae infected with P. aeruginosa, isolate these surviving cells, and characterise their phenotype and genotype. Methods: Infected [...] Read more.
Background: The aim of this work was to induce the formation of antibiotic-tolerant and/or persister cells in vivo using antibiotic therapy on Galleria mellonella larvae infected with P. aeruginosa, isolate these surviving cells, and characterise their phenotype and genotype. Methods: Infected larvae were treated with effective doses of either ceftazidime or meropenem. Despite this, surviving P. aeruginosa colonies were isolated from living larvae, and antibiotic killing, fitness, virulence, antibiotic resistance and the whole genome sequence of a selection of these isolates were compared with their original parent strains. Results: The surviving isolates had an increased minimum duration to kill 99% of the population (MDK99) upon exposure to ceftazidime or meropenem and decreased growth rates in culture, but they showed no change to the MIC or virulence—consistent with an antibiotic-tolerant phenotype. Long-read genome sequencing of selected isolates revealed only one single nucleotide polymorphism (SNP) within bkdB, encoding the lipoamide acyltransferase component of the branched-chain α-keto acid dehydrogenase, present in two independent isolates. However, time-kill assays with ceftazidime of bkdB knockout strains showed no significant change in the MDK99. Concomitant with the antibiotic-tolerant phenotype, many of the isolates also had a reduced rate of killing when exposed to heat stress. Conclusions: P. aeruginosa cells that survived antibiotic therapy in vivo were found to be antibiotic-tolerant and thermotolerant but not antibiotic-resistant and had reduced growth rates under optimal conditions but unchanged virulence. In the absence of a convincing genetic explanation, the co-induction of enhanced thermotolerance with antibiotic tolerance indicated that both are conferred by a heritable phenotypic mechanism. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

15 pages, 1559 KiB  
Article
Effect of Retinoic Acid on the Cerebral Vasculature: Analysis of the Vasoactive Response of Smooth Muscle Cells in Normal and Ischemic Contexts
by Manuel R. Pouso, Emanuel Farinha, Henrique E. Costa, Margarida Lorigo, Graça Baltazar and Elisa Cairrao
J. Xenobiot. 2025, 15(3), 69; https://doi.org/10.3390/jox15030069 - 10 May 2025
Viewed by 468
Abstract
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects [...] Read more.
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects of blood–brain barrier disruption by blocking the apoptotic signaling pathway. However, the effect of RA on smooth muscle cells (SMCs), which are crucial to maintaining blood perfusion, has never been investigated. This study aimed to evaluate the effect of RA on the vasoactive response of middle cerebral artery SMCs in normal and ischemic contexts (O2 and glucose deprivation, OGD). For this purpose, SMCs cultures were incubated with RA, and the vasoactive response was evaluated in both conditions (OGD and non-OGD). To simulate OGD, co-cultures of neurons and astrocytes were made and incubated with RA to analyze the effect of the secretome released by these cells on SMCs contractility. In non-OGD conditions, RA induced rapid relaxation of SMCs and, in the long term (24 h), promoted cell contraction. In OGD conditions, SMCs contractility patterns were different when pre-incubated with RA. In these conditions, NA loses its contractility effect, and SNP seems to revert its relaxant effect. However, SMCs pre-incubated with 5 uM RA show the vasorelaxant pattern typical of SNP, despite the OGD condition. These effects demonstrate an effect of RA on the vasoactive profile of SMCs, with therapeutic potential in OGD conditions. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

25 pages, 1360 KiB  
Article
Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria
by Hajer Ziadi, Fadela Chougrani, Abderrahim Cheriguene, Leticia Carballeira, Vanesa García and Azucena Mora
Antibiotics 2025, 14(5), 485; https://doi.org/10.3390/antibiotics14050485 - 9 May 2025
Viewed by 1226
Abstract
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal [...] Read more.
Background: High-risk Escherichia coli clones, such as sequence type (ST)131 and ST1193, along with multidrug-resistant (MDR) Klebsiella pneumoniae, are globally recognized for their significant role in urinary tract infections (UTIs). This study aimed to provide an overview of the virulence factors, clonal diversity, and antibiotic resistance profiles of extended-spectrum cephalosporin (ESC)-E. coli and K. pneumoniae causing UTIs in humans in the Tebessa region of Algeria. Methods: Forty E. coli and 17 K. pneumoniae isolates exhibiting ESC-resistance were recovered (July 2022–January 2024) from urine samples of patients at three healthcare facilities to be phenotypically and genotypically characterized. Whole genome sequencing (WGS) was performed on the ST1193 clone. Results: Among K. pneumoniae isolates, all except one harbored CTX-M-15, with a single isolate carrying blaCTX-M-194. Additionally, two K. pneumoniae isolates co-harboring blaCTX-M-15 and blaNDM exhibited phenotypic and genotypic hypervirulence traits. Fluoroquinolone resistance (FQR) was detected in 94.1% of K. pneumoniae isolates. The E. coli isolates carried diverse ESC-resistance genes, including CTX-M-15 (87.5%), CTX-M-27 (5%), CTX-M-1, CMY-59, and CMY-166 (2.5% each). Co-carriage of blaESC and blaOXA-48 was identified in three E. coli isolates, while 62.5% exhibited FQR. Phylogenetic analysis revealed that 52.5% of E. coli belonged to phylogroup B2, including the high-risk clonal complex (CC)131 CH40-30 (17 isolates) and ST1193 (one isolate). In silico analysis of the ST1193 genome determined O75:H5-B2 (CH14-64), and the carriage of IncI1-I(Alpha) and IncF [F-:A1:B10] plasmids. Notably, core genome single-nucleotide polymorphism (SNP) analysis demonstrated high similarity between the Algerian ST1193 isolate and a previously annotated genome from a hospital in Northwest Spain. Conclusions: This study highlights the spread and genetic diversity of E. coli CC131 CH40-30 and hypervirulent K. pneumoniae clones in Algeria. It represents the first report of a CTX-M-15-carrying E. coli ST1193 in the region. The findings emphasize the urgent need for antibiotic optimization programs and enhanced surveillance to curb the dissemination of high-risk clones that pose an increasing public health threat in Algeria. A simplified method based on virulence traits for E. coli and K. pneumoniae is proposed here for antimicrobial resistance (AMR) monitoring. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

18 pages, 5233 KiB  
Article
Retinoid X Receptor as a Therapeutic Target to Treat Neurological Disorders Associated with α-Synucleinopathy
by Assylbek Zhylkibayev, Christopher R. Starr, M. Iqbal Hossain, Sandeep Kumar, Shaida A. Andrabi, Maria B. Grant, Venkatram R. Atigadda, Marina S. Gorbatyuk and Oleg S. Gorbatyuk
Cells 2025, 14(10), 685; https://doi.org/10.3390/cells14100685 - 9 May 2025
Viewed by 852
Abstract
This study investigated the therapeutic potential of the nuclear retinoid X receptor (RXR) in mitigating the progression of alpha-synucleinopathies (αSNPs), particularly in Parkinson’s disease (PD). PD-like pathology in mice was successfully induced through the co-delivery of AAV expressing human α-synuclein (αS) and αS [...] Read more.
This study investigated the therapeutic potential of the nuclear retinoid X receptor (RXR) in mitigating the progression of alpha-synucleinopathies (αSNPs), particularly in Parkinson’s disease (PD). PD-like pathology in mice was successfully induced through the co-delivery of AAV expressing human α-synuclein (αS) and αS preformed fibrils (PFFs) into the substantia nigra pars compacta (SNpc). Significant increases in Lewy body (LB)-like inclusions, loss of tyrosine hydroxylase-positive (TH+) neurons, and reductions in dopamine (DA) levels in the striatum were observed. Additionally, diminished levels of PPARα and NURR1—proteins essential for neuronal survival—along with elevated expression of IBA1 and GFAP, markers of microglial activation and astrocytic gliosis, respectively, are associated with the pathogenesis of Parkinson’s disease. AAV-mediated overexpression of human RXRα demonstrated preservation of TH+ neurons, prevention of DA decline, and attenuation of αS accumulation. Furthermore, RXR-treated PD brains showed a reduced number of GFAP+ and Iba1+ cells, decreased GFAP+ and IBA1+ immunoreactivity, and fewer and less widespread LB-like aggregates. RXR overexpression also enhanced the production of PPARα and NURR1. These findings suggest that RXRα upregulation promotes neuroprotection by mitigating αSNPs and chronic neuroinflammation, a major contributor to PD progression. This research underscores the therapeutic potential of targeting nuclear receptors, such as RXR, in neurodegenerative diseases like PD. Full article
Show Figures

Figure 1

26 pages, 4120 KiB  
Article
Pleiotropic Genes Affecting Milk Production, Fertility, and Health in Thai-Holstein Crossbred Dairy Cattle: A GWAS Approach
by Akhmad Fathoni, Wuttigrai Boonkum, Vibuntita Chankitisakul, Sayan Buaban and Monchai Duangjinda
Animals 2025, 15(9), 1320; https://doi.org/10.3390/ani15091320 - 2 May 2025
Viewed by 673
Abstract
Understanding the genetic basis of economically important traits is essential for enhancing the productivity, fertility, and health of dairy cattle. This study aimed to identify the pleiotropic genes associated with the 305-day milk yield (MY305), days open (DO), and milk fat-to-protein ratio (FPR) [...] Read more.
Understanding the genetic basis of economically important traits is essential for enhancing the productivity, fertility, and health of dairy cattle. This study aimed to identify the pleiotropic genes associated with the 305-day milk yield (MY305), days open (DO), and milk fat-to-protein ratio (FPR) in Thai-Holstein crossbred dairy cattle using a genome-wide association study (GWAS) approach. The dataset included 18,843 records of MY305 and milk FPR, as well as 48,274 records of DO, collected from first-lactation Thai-Holstein crossbred dairy cattle. A total of 868 genotyped animals and 43,284 informative SNPs out of 50,905 were used for the analysis. The single-nucleotide polymorphism (SNP) effects were evaluated using a weighted single-step GWAS (wssGWAS), which estimated these effects based on genomic breeding values (GEBVs) through a multi-trait animal model with single-step genomic BLUP (ssGBLUP). Genomic regions explaining at least 5% of the total genetic variance were selected for candidate gene analysis. Single-step genomic REML (ssGREML) with a multi-trait animal model was used to estimate components of (co)variance. The heritability estimates from additive genetic variance were 0.262 for MY305, 0.029 for DO, and 0.102 for milk FPR, indicating a moderate genetic influence on milk yield and a lower genetic impact on fertility and milk FPR. The genetic correlations were 0.559 (MY305 and DO), −0.306 (MY305 and milk FPR), and −0.501 (DO and milk FPR), indicating potential compromises in genetic selection. wssGBLUP showed a higher accuracy than ssGBLUP, although the improvement was modest. A total of 24, 46, and 33 candidate genes were identified for MY305, DO, and milk FPR, respectively. Pleiotropic effects, identified by SNPs showing significant influence with more than trait, were observed in 14 genes shared among all three traits, 17 genes common between MY305 and DO, 14 genes common between MY305 and milk FPR, and 26 genes common between DO and milk FPR. Overall, wssGBLUP is a promising approach for improving the genomic prediction of economic traits in multi-trait analyses, outperforming ssGBLUP. This presents a viable alternative for genetic evaluation in dairy cattle breeding programs in Thailand. However, further studies are needed to validate these candidate genes and refine marker selection for production, fertility, and health traits in dairy cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop