Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients’ Population
2.2. Study Protocol
2.3. Genotyping
2.4. Biochemical Assay
2.5. Renal Response to Dapagliflozin
2.6. Sample Size Calculation
2.7. Data Analysis
3. Results
3.1. Baseline Characteristics of the Study Cohort
3.2. Comparison Between Responders and Non-Responders Regarding Post Treatment Assessed Outcome and Their Respective Genotypes
3.3. Association Between SNPs and Renal Response
3.4. Predictors of Renal Response
3.5. Correlation Between Renal Biomarkers and eGFR
4. Discussion
Clinical Implications and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.; Coats, A.J. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Ahmad, T.; Alexander, K.; Baker, W.L.; Bosak, K.; Breathett, K.; Carter, S.; Drazner, M.H.; Dunlay, S.M.; Fonarow, G.C.; et al. HF STATS 2024: Heart Failure Epidemiology and Outcomes Statistics an Updated 2024 Report from the Heart Failure Society of America. J. Card. Fail. 2025, 31, 66–116. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1412–1451. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef] [PubMed]
- Klen, J.; Dolžan, V. Treatment response to SGLT2 inhibitors: From clinical characteristics to genetic variations. Int. J. Mol. Sci. 2021, 22, 9800. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Liang, Y.; Sahasrabudhe, V.; Tensfeldt, T.; Fediuk, D.J.; Zhou, S.; Krishna, R.; Dawra, V.K.; Wood, L.S.; Sweeney, K. Meta-analysis of noncompartmental pharmacokinetic parameters of ertugliflozin to evaluate dose proportionality and UGT1A9 polymorphism effect on exposure. J. Clin. Pharmacol. 2021, 61, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Kang, B.; Fan, S.; Chen, C.; Li, W.; Chen, J.; He, Z.; Tang, F.; Zhou, J. Role of SLC5A2 polymorphisms and effects of genetic polymorphism on sodium glucose cotransporter 2 inhibitors response. Mol. Biol. Rep. 2023, 50, 9637–9647. [Google Scholar] [CrossRef] [PubMed]
- Santer, R.; Calado, J. Familial renal glucosuria and SGLT2: From a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 2010, 5, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Köttgen, A.; Pattaro, C.; Böger, C.A.; Fuchsberger, C.; Olden, M.; Glazer, N.L.; Parsa, A.; Gao, X.; Yang, Q.; Smith, A.V.; et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 2010, 42, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, S.; Melander, O.; Johnson, T.; Di Blasio, A.M.; Lee, W.K.; Gentilini, D.; Hastie, C.E.; Menni, C.; Monti, M.C.; Delles, C.; et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010, 6, e1001177. [Google Scholar] [CrossRef] [PubMed]
- Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.; Walker, M.; Levy, J.C.; Sampson, M.; Halford, S.; et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6. 2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003, 52, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Škrtić, M.; Yang, G.K.; Perkins, B.A.; Soleymanlou, N.; Lytvyn, Y.; von Eynatten, M.; Woerle, H.J.; Johansen, O.E.; Broedl, U.C.; Hach, T.; et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 2014, 57, 2599–2602. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Pai, D.; Adiga, S.; Suresh, G.; Adiga, U.; Chaitra, D.; Honalli, N.M. The association of ACE gene polymorphism and serum ACE levels with diabetic nephropathy-a cross-sectional study. J. Appl. Pharm. Sci. 2024, 14, 210–217. [Google Scholar] [CrossRef]
- Katzmann, J.L.; Mason, A.M.; März, W.; Kleber, M.E.; Niessner, A.; Blüher, M.; Speer, T.; Laufs, U. Genetic variation in sodium-glucose cotransporter 2 and heart failure. Clin. Pharmacol. Ther. 2021, 110, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.; Langkilde, A.; Wheeler, D. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2021, 384, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Xu, Q.; Yao, Y.; Li, X.; Yan, H.; Lv, Q. The Impact of Genetic Polymorphisms on the Anti-Hyperglycemic Effect of Dapagliflozin. Diabetes Metab. Syndr. Obes. 2024, 17, 2881–2894. [Google Scholar] [CrossRef] [PubMed]
- Malki, M.A.; Pearson, E.R. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenomics J. 2020, 20, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Otterstad, J. Measuring left ventricular volume and ejection fraction with the biplane Simpson’s method. Heart 2002, 88, 559–560. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.; Kosiborod, M.; Inzucchi, S.E.; Cherney, D.Z. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018, 94, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Neuen, B.L.; Ohkuma, T.; Neal, B.; Matthews, D.R.; De Zeeuw, D.; Mahaffey, K.W.; Fulcher, G.; Desai, M.; Li, Q.; Deng, H.; et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function: Data from the CANVAS Program. Circulation 2018, 138, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.C.; Stefánsson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Mota-Zamorano, S.; González, L.M.; Robles, N.R.; Valdivielso, J.M.; Arévalo-Lorido, J.C.; López-Gómez, J.; Gervasini, G. Polymorphisms in glucose homeostasis genes are associated with cardiovascular and renal parameters in patients with diabetic nephropathy. Ann. Med. 2022, 54, 3039–3051. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-N.; Tain, Y.-L. Targeting the renin–angiotensin–aldosterone system to prevent hypertension and kidney disease of developmental origins. Int. J. Mol. Sci. 2021, 22, 2298. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.A.; Katz, R.; Bonventre, J.V.; Sabbisetti, V.; Siscovick, D.; Sarnak, M.; Shlipak, M.G. Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 2012, 60, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Latoch, E.; Konończuk, K.; Taranta-Janusz, K.; Muszyńska-Rosłan, K.; Szymczak, E.; Wasilewska, A.; Krawczuk-Rybak, M. Urine NGAL and KIM-1: Tubular injury markers in acute lymphoblastic leukemia survivors. Cancer Chemother. Pharmacol. 2020, 86, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Anandkumar, D.G.; Dheerendra, P.C.; Vellakampadi, D.; Ramanathan, G. Kidney injury molecule-1; is it a predictive marker for renal diseases? J. Nephropharmacol. 2023, 12, e10572. [Google Scholar] [CrossRef]
Characteristics | Non-Responder Group (n = 71) | Responder Group (n = 129) | Significance (p-Value) |
---|---|---|---|
Age (yrs); mean ± SD | 55.6 ± 10.54 | 57.1 ± 11.1 | 0.48 |
Sex; n (%) | |||
Male | 24 (33.8%) | 43 (33.3%) | 0.92 |
Female | 47 (66.2%) | >86 (66.7%) | |
Diabetes mellitus; n (%) | 29 (40.8%) | 49 (38%) | 0.76 |
Hypertension; n (%) | 30 (42.3%) | 57 (44.2%) | 0.67 |
Heart rate | 82.6 ± 16.5 | 81.2 ± 16.7 | 0.58 |
CBC; mean ± SD | |||
RBCs (106 cells/µL) | 4.92 ± 0.81 | 4.85 ± 0.72 | 0.34 |
Hemoglobin (gm/dL) | 12.9 ± 1.74 | 12.4 ± 1.66 | 0.96 |
WBCs (103 cells/µL) | 8.65 ± 2.6 | 8.49 ± 2.1 | 0.13 |
Platelets (103 cells/µL) | 259.2 ± 100.1 | 253.6 ± 77.9 | 0.29 |
Liver function Tests; mean ± SD | |||
AST (U/L) | 23.4 ± 14.4 | 26.8 ± 18.2 | 0.18 |
ALT (U/L) | 35.7 ± 11.6 | 30.1 ± 16.2 | 0.105 |
Kidney function Tests; mean ± SD | |||
BUN (mg/dL) | 18.6 ± 8.9 | 21.3 ± 9.2 | 0.604 |
Serum creatinine (mg/dL) | 1.08 ± 0.32 | 1.12 ± 0.41 | 0.19 |
Serum K (mEq/L); mean ± SD | 4.1 ± 0.42 | 4.3 ± 0.58 | 0.09 |
eGFR | 77.2 ± 22.9 | 73.1 ± 23.8 | 0.89 |
Echocardiographic parameters | |||
EF at baseline (%) | 35.4 ± 11.2 | 35.3 ± 10.4 | 0.83 |
ESV at baseline (mL) | 113.2 ± 42.3 | 116.2 ± 39.8 | 0.74 |
EDV at baseline (mL) | 170.3 ± 72.1 | 164.6 ± 62.8 | 0.6 |
NYHA Class | |||
II | 67 (51.9%) | 38 (53.5%) | 0.58 |
III | 55 (42.6%) | 27 (38%) | |
IV | 7 (5.4%) | 6 (8.5%) | |
Biochemical markers | |||
KIM-1 (pg/mL) | 169.8 ± 71.4 | 174.2 ± 66.5 | 0.91 |
NGAL (pg/mL) | 229.3 ± 99.6 | 248.7 ± 98.1 | 0.82 |
Characteristics | Non-Responder Group | Responder Group | Significance (p-Value) |
---|---|---|---|
Kidney function Tests; mean ± SD | |||
| 73.6 ± 20.3 | 82.9 ± 18.6 | 0.014 * |
| −2.9 ± 4.2 | 9.9 ± 2.9 | 0.0001 * |
Echocardiographic parameters | |||
| 37.9 ± 12.6 | 38.9 ± 11.1 | 0.247 |
| 108.4 ± 27.1 | 101.3 ± 31.8 | 0.482 |
| 148.4 ± 51.8 | 140.8 ± 49.2 | 0.749 |
Biochemical markers | |||
| 224.4 ± 97.8 | 141.3 ± 58.3 | <0.001 * |
| 50.2 ± 31.1 | −34.8 ±27.0 | <0.0001 * |
| 301.4 ± 132.9 | 196.4 ± 80.1 | <0.001 * |
| 72.1 ± 42.1 | −52.4 ± 24.5 | <0.001 * |
SLC5A2 SNP rs3813008 | |||
| 0 (0%) | 63 (48.8%) | 0.0002 * |
| 53 (73.2%) | 57 (44.2%) | |
| 18 (26.8%) | 9 (7%) | |
KCNJ11 SNP rs5219 | |||
| 40 (56.3%) | 79 (61.2%) | 0.119 |
| 22 (31%) | 44 (34.1%) | |
| 9 (12.7%) | 6 (4.7%) | |
UMOD SNP rs12917707 | |||
| 29 (40.8%) | 66 (51.2%) | 0.001 * |
| 24 (33.8%) | 55 (42.6%) | |
| 18 (25.4%) | 8 (6.2%) | |
ACE SNP rs4343 | |||
| 16 (22.5%) | 46 (35.7%) | 0.0001 * |
| 48 (67.6%) | 45 (34.9%) | |
| 7 (9.9%) | 38 (29.5%) |
Treatment Group | eGFR After 6 Months (mL) Mean ± SD | Change in eGFR (mL) Mean ± SD | KIM-1 After 6 Months (pg/mL) Mean ± SD | Change in KIM-1 (pg/mL) Mean ± SD | NGAL After 6 Months (pg/mL) Mean ± SD | Change in NGAL (pg/mL) Mean ± SD |
---|---|---|---|---|---|---|
SLC5A2 SNP rs3813008 | ||||||
Non-Responders GG GA AA | ------------- | ------------- | ------------- | ------------ | ------------- | ------------- |
72.5 ± 24.5 | −2.3 ± 4.4 | 210 ± 72 | 48 ± 33 | 280.8 ± 29.2 | 68.6 ± 31.9 | |
71.4 ± 25.2 | −5.8 ± 2.9 | 205 ± 82 | 51 ± 32 | 339.9 ± 27.9 | 92.1 ± 33.7 | |
Responders GG GA AA | 71.1 ± 25.7 | −3.1 ± 4.1 | 232 ± 87 | 52 ± 29 | 316.9 ± 36.5 | 72.4 ± 29.8 |
79.9 ± 22.6 | 13.6 ± 0.65 | 143 ± 56 | −38 ± 21 | 202.1 ± 14.8 | −51.8 ± 24.6 | |
80.5 ± 21.9 | 9.9 ± 2.9 | 141 ± 58 | −34 ± 17 | 196.3 ± 10.1 | −52.4 ± 24.5 | |
Test Statistic | F = 0.52 | F = 161.4 | F = 6.1 | F = 144.5 | F = 36.3 | F = 345 |
p-Value | 0.133 | <0.0001 * | <0.0001 * | <0.0001 * | 0.001 * | <0.0001 * |
KCNJ11 SNP rs5219 | ||||||
Non-Responders CC CT TT | 75.6 ± 23.7 | −3.1 ± 2.3 | 210 ± 80 | 49 ± 31 | 286.1 ± 41.3 | 74.2 ± 34.2 |
68.9 ± 26.8 | −1.8 ± 2.1 | 200 ± 92 | 45 ± 28 | 268.3 ± 26.3 | 71.7 ± 38.3 | |
65.3 ± 24.6 | −3.9 ± 1.8 | 280 ± 42 | 66 ± 32 | 253.7 ± 61.4 | 50.5 ± 18.5 | |
Responders CC CT TT | 71.6 ± 21.7 | 10.1 ± 2.9 | 151 ± 55 | −32 ± 13 | 189.5 ± 16.8 | −54.2 ± 26.8 |
67.1 ± 22.1 | 9.7 ± 3.1 | 141 ± 60 | −38 ± 26 | 206.7 ± 22.1 | −49.9 ± 21.4 | |
74.5 ± 18.4 | 9.9 ± 2.7 | 144 ± 72 | −34 ± 21 | 197.8 ± 17.9 | −50.2 ± 22.6 | |
Test Statistic | F = 0.71 | F = 105.5 | F = 5.2 | F = 75.1 | F = 3.7 | F = 345 |
p-Value | 0.62 | <0.0001 * | <0.0001 * | <0.0001 * | 0.003 * | <0.0001 * |
UMOD SNP rs12917707 | ||||||
Non-Responders GG GT TT | 67.2 ± 20.5 | −3.1 ± 4.2 | 220 ± 67 | 52 ± 37 | 286.8 ± 26.1 | 76.4 ± 19.3 |
71.8 ± 30.1 | −2.2 ± 3.9 | 190 ± 83 | 40 ± 21 | 274.9 ± 34.1 | 70.5 ± 40.5 | |
77.9 ± 25.1 | −3.2 ± 4.8 | 240 ± 91 | 54 ± 34 | 232.8 ± 63.2 | 58.3 ± 36.1 | |
Responders GG GT TT | 67.5 ± 22.9 | 9.6 ± 2.9 | 150 ± 62 | −35 ± 18 | 195.3 ± 37.8 | −51.5 ± 23.4 |
77.6 ± 20.9 | 10.1 ± 3.1 | 135 ± 53 | −32 ± 17 | 196.2 ± 30.6 | −52.3 ± 24 | |
80 ± 21.4 | 10.5 ± 2.8 | 138 ± 51 | −36 ± 16 | 198.3 ± 33.5 | −53.8 ± 28.2 | |
Test Statistic | F = 0.45 | F = 104 | F = 5.3 | F = 76.7 | F = 3.8 | F = 111.6 |
p-Value | 0.81 | <0.0001 * | <0.0001 * | <0.0001 * | <0.003 * | <0.0001 * |
ACE SNP rs4343 | ||||||
Non-Responders AA AG GG | 68.6 ± 23.7 | −2.8 ± 3.9 | 190 ± 72 | 43 ± 32 | 288.1 ± 38.9 | 75.1 ± 24.8 |
68.8 ± 28.8 | −2.9 ± 4.4 | 221 ± 41 | 50 ± 29 | 284.4 ± 25.4 | 72.5 ± 32.5 | |
72.6 ± 27.9 | −2.5 ± 4.2 | 213 ± 78 | 46 ± 31 | 260.4 ± 32.9 | 69.5 ± 28.9 | |
Responders AA AG GG | 78.5 ± 23.2 | 9.9 ± 2.8 | 148 ± 56 | −32 ± 16 | 186.6 ± 29.7 | −44.6 ± 25 |
70.3 ± 19.7 | 10.1 ± 3.3 | 140 ± 65 | −35 ± 21 | 194.6 ± 15.8 | −52.8 ± 23.5 | |
73.1 ± 22.7 | 10.3 ± 3.5 | 139 ± 60 | −34 ± 17 | 232.9 ± 20.3 | −69.8 ± 18.1 | |
Test Statistic | F = 0.42 | F = 102.4 | F = 4.7 | F = 73.8 | F = 3.9 | F = 112.3 |
p-Value | 0.83 | <0.0001 * | <0.0001 * | <0.0001 * | 0.002 * | <0.0001 * |
Predictors of Renal Outcomes | Beta Coefficient ±SE | Adjusted R2 | p-Value |
---|---|---|---|
Change in eGFR | |||
SLC5A2 rs3813008 SNP | 4.7 ± 0.78 | 0.49 | 0.001 * |
UMOD rs12917707 SNP | 1.6 ± 0.78 | 0.043 * | |
Change in KIM-1 | |||
SLC5A2 rs3813008 SNP | −26.2 ± 10.3 | 0.44 | <0.0001 * |
eGFR after 6 months | 11.5 ± 4.2 | 0.002 * | |
UMOD rs1291770 SNP | −13.7 ± 11.6 | 0.017 * | |
Change in NGAL | |||
SLC5A2 rs3813008 SNP | −42.5 ± 17.6 | 0.48 | 0.0001 * |
UMOD rs12917707 SNP | −16.8 ± 12.3 | 0.032 * |
Change in eGFR (mL/min) | Change in KIM-1 (ng/mL) | Change in NGAL (ng/mL) | Change in LVEF (%) | |
---|---|---|---|---|
Change in eGFR (mL/min) | −0.764 | −0.722 | −0.140 | |
p < 0.0001 * | p < 0.0001 * | p = 0.09 | ||
Change in KIM-1 (ng/mL) | −0.764 | 0.714 | −0.011 | |
p < 0.0001 * | p < 0.0001 * | p = 0.884 | ||
Change in NGAL (ng/mL) | −0.722 | 0.714 | 0.061 | |
p < 0.0001 * | p < 0.0001 * | p = 0.416 | ||
Change in LVEF (%) | −0.140 | −0.011 | 0.061 | |
p = 0.09 | p = 0.884 | p = 0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarhan, N.; Schaalan, M.F.; El-Sheikh, A.A.K.; Zarif, B. Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin. Pharmaceutics 2025, 17, 959. https://doi.org/10.3390/pharmaceutics17080959
Sarhan N, Schaalan MF, El-Sheikh AAK, Zarif B. Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin. Pharmaceutics. 2025; 17(8):959. https://doi.org/10.3390/pharmaceutics17080959
Chicago/Turabian StyleSarhan, Neven, Mona F. Schaalan, Azza A. K. El-Sheikh, and Bassem Zarif. 2025. "Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin" Pharmaceutics 17, no. 8: 959. https://doi.org/10.3390/pharmaceutics17080959
APA StyleSarhan, N., Schaalan, M. F., El-Sheikh, A. A. K., & Zarif, B. (2025). Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin. Pharmaceutics, 17(8), 959. https://doi.org/10.3390/pharmaceutics17080959