Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,516)

Search Parameters:
Keywords = climatic space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1131 KB  
Article
Nature-Based Solution for Sustainable Urban Pavement Construction in South Africa
by Douglas Aghimien and John Aliu
Urban Sci. 2025, 9(11), 479; https://doi.org/10.3390/urbansci9110479 - 14 Nov 2025
Abstract
As urban areas in developing countries, including South Africa, continue to grapple with the adverse challenges of climate change and rapid population growth, there is an increasing call for nature-inspired solutions. This is because nature-based solutions (NbSs) can significantly enhance urban resilience by [...] Read more.
As urban areas in developing countries, including South Africa, continue to grapple with the adverse challenges of climate change and rapid population growth, there is an increasing call for nature-inspired solutions. This is because nature-based solutions (NbSs) can significantly enhance urban resilience by managing stormwater, reducing flooding and creating livable spaces within urban centers. One such NbS is permeable pavement, which has gained attention for its ability to allow water to infiltrate rather than run off. However, while its use is growing in developed nations, the story is not the same in South Africa, where the literature is silent on its usage and issues of flooding and other associated disasters have persisted. Therefore, this study adopts a post-positivist approach to investigate the application and challenges of permeable pavements as an NbS in South African urban areas. The study reveals a low level of permeable pavement use, albeit an encouraging level of awareness among built environment professionals. Covariance-based structural equation modelling further revealed the significant causes of this poor application. The findings provide valuable insights for policymakers to create incentives and frameworks that promote permeable pavement adoption in urban areas facing environmental challenges. Moreover, this research contributes to the limited literature on NbSs in South Africa, offering a foundation for future studies and addressing the pressing need for innovative solutions to flooding and urban resilience. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

26 pages, 11874 KB  
Article
Is the Concept of a 15-Minute City Feasible in a Medium-Sized City? Spatial Analysis of the Accessibility of Municipal Services in Koszalin (Poland) Using Gis Modelling
by Maciej Szkoda, Maciej Michnej, Beata Baziak, Marek Bodziony, Alicja Hrehorowicz-Nowak, Hanna Hrehorowicz-Gaber, Marcin Wołek, Aleksander Jagiełło, Sandra Żukowska and Renata Szott
Sustainability 2025, 17(22), 10157; https://doi.org/10.3390/su172210157 - 13 Nov 2025
Abstract
Currently, an active debate is underway among the academic community, urban planners, and policymakers regarding optimal models of urban development, given that the majority of the population now resides in cities. One concept under discussion is the 15 min city, which posits that [...] Read more.
Currently, an active debate is underway among the academic community, urban planners, and policymakers regarding optimal models of urban development, given that the majority of the population now resides in cities. One concept under discussion is the 15 min city, which posits that all urban residents should be able to reach key, frequently used services within a 15 min walk or cycle. Although the literature suggests numerous potential benefits, debate persists about whether such cities would be optimal from the standpoint of sustainable development objectives and residents’ quality of life. The ongoing discussion also concerns the extent to which existing cities are capable of aligning with this concept. This is directly linked to the actual spatial distribution of individual services within the city. The literature indicates a research gap arising from a shortage of robust case studies that would enable a credible assessment of the practical implementation of this idea across diverse cities, countries, and regions. This issue pertains to Poland as well as to other countries. A desirable future scenario would involve comprehensive mapping of all cities, with respect to both the spatial distribution of specific services and related domains such as the quality and coherence of linear infrastructure. This article presents an analysis of the spatial accessibility of basic urban services in the context of implementing the 15 min city concept, using the city of Koszalin (Poland) as a case study. This city was selected due to its representative character as a medium-sized urban centre, both in terms of population and area, as well as its subregional functions within Poland’s settlement structure. Koszalin also exhibits a typical spatial and functional layout characteristic of many Polish cities. In light of growing challenges related to urbanisation, climate change, and the need to promote sustainable mobility, this study focuses on evaluating access to services such as education, healthcare, retail, public transport, and green spaces. The use of Geographic Information System (GIS) tools enabled the identification of spatial variations in service accessibility across the city. The results indicate that only 11% of Koszalin’s area fully meets the assumptions of the 15 min city concept, providing pedestrians with convenient access to all key services. At the same time, 92% of the city’s area offers access to at least one essential service within a 15 min walk. Excluding forested areas not intended for development increases these values to 14% and 100%, respectively. This highlights the extent to which methodological choices in assessing pedestrian accessibility can shape analytical outcomes and the interpretations drawn from them. Moreover, given this article’s objective and the adopted analytical procedure, the assumed pedestrian walking speed is the key parameter. Accordingly, a sensitivity analysis was conducted, comparing the reference scenario (4 km/h) with alternative variants (3 and 5 km/h). This approach demonstrates the extent to which a change in a single parameter affects estimates of urban-area coverage by access to individual services reachable on foot within 15 min. The analysis reveals limited integration of urban functions at the local scale, highlighting areas in need of planning intervention. This article proposes directions for action to improve pedestrian accessibility within the city. Full article
Show Figures

Figure 1

17 pages, 2438 KB  
Article
Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change
by Qing Long and Xiaoli Su
Remote Sens. 2025, 17(22), 3699; https://doi.org/10.3390/rs17223699 - 12 Nov 2025
Abstract
To facilitate easy accessibility to the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) results for the geoscientific community, multiple institutions have successively developed mass anomaly grid products including mass concentration (mascon) grids; these were provided at the Gravity Information Service [...] Read more.
To facilitate easy accessibility to the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) results for the geoscientific community, multiple institutions have successively developed mass anomaly grid products including mass concentration (mascon) grids; these were provided at the Gravity Information Service (GravIS) portal. However, an assessment of their consistency for studying large-scale mass redistribution and transport in Earth’s system is still not available. Here, we compare three major mascon solutions separately from the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL), the Goddard Space Flight Center (GSFC) and GravIS products based on the Combination Service for Time-variable Gravity fields (COST-G) by analyzing the Antarctic Ice Sheet (AIS) mass changes in four aspects. Our results demonstrate that: (1) the four datasets exhibit strong consistency on the entire AIS mass change time series, with the largest difference occurring in the Antarctic Peninsula; (2) mass trend estimates show better agreement over longer periods and larger regions, but differences with a percentage of 20–40 exist during the late stage of GRACE and the whole GRACE-FO timespan; (3) notable discrepancies arise in the annual statistics of the Eastern AIS in 2016, leading to inconsistency on the sign of annual AIS mass change; (4) good agreement can be seen among these interannual mass variations over the AIS and its three subregions during 2003–2023, excluding the period from mid-2016 to mid-2018. These findings may provide key insights into improving algorithms for mascon solutions and grid products towards refining their applications in ice mass balance studies. Full article
(This article belongs to the Special Issue Earth Observation of Glacier and Snow Cover Mapping in Cold Regions)
Show Figures

Figure 1

38 pages, 5637 KB  
Article
Perceptions and Use of Urban Green Spaces, Leading Pathways to Urban Resilience
by Angeliki T. Paraskevopoulou, Eleni Mougiakou and Chrysovalantis Malesios
Sustainability 2025, 17(22), 10093; https://doi.org/10.3390/su172210093 - 12 Nov 2025
Viewed by 48
Abstract
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape [...] Read more.
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape green space use. The results show that, while green spaces are essential for health, well-being, and social cohesion, their distribution is uneven, which limits their availability (27.3%) and access (21.8%) to residents. Main concerns expressed by residents when visiting green spaces and open green spaces are poor maintenance (50.7%), lack of security (36.7%), and socially irresponsible behaviour (e.g., littering, vandalism) (32.8%). Extreme heat emerged as a major constraint on outdoor activities, particularly affecting women and the elderly. Household-associated outdoor areas (balconies, courtyards, and verandas) were highly valued (59.8%), highlighting the role of private green spaces in dense urban environments. Major metropolitan parks were the most visited and valued by residents for providing contact with nature (23.0%) and benefiting from stress relief (54.0%) while practicing their favourite activity, though their use was limited during heatwaves (30.3% of the residents do not visit). Most activities during and after the COVID-19 pandemic were reported unchanged, though reported increases in walking (34.3%) and park visits (28.3%) demonstrate the importance of green spaces in fostering urban resilience. However, the reported lack of engagement in gardening (48.0%), indoor plant care (41.2%) and bird/wildlife watching (58.3%) suggest missed opportunities for ecological and cultural enrichment. Overall, the study underscores the urgent need for integrated planning strategies to improve accessibility, maintenance, and equity in green space provision. By aligning with the sustainable development goals, the four regional units of the Region of Attica can transform its green infrastructure into an inclusive, resilient system that supports public health, social inclusion, and climate adaptation. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

13 pages, 1610 KB  
Article
Climate Skepticism in a University Context: Influences of Gender, Religion, and Political Spectrum
by Ricado Ramos, Maria José Rodrigues and Isilda Rodrigues
Societies 2025, 15(11), 313; https://doi.org/10.3390/soc15110313 - 11 Nov 2025
Viewed by 68
Abstract
Climate change is one of the most pressing environmental challenges of our time, with consequences that extend far beyond temperature rise. Its impacts include extreme weather events, sea level rise, biodiversity loss, and disruptions to food and water systems, all of which threaten [...] Read more.
Climate change is one of the most pressing environmental challenges of our time, with consequences that extend far beyond temperature rise. Its impacts include extreme weather events, sea level rise, biodiversity loss, and disruptions to food and water systems, all of which threaten ecosystems and human well-being. Addressing this crisis requires a broad understanding and engagement from society. However, climate change denial persists, often amplified through online platforms, slowing down effective action. Universities can play a critical role in this context, not only as spaces where scientific knowledge is produced and shared, but also as institutions that train future leaders to respond to environmental crises. In this study, we examined the prevalence of climate change denial among members of a Portuguese public university and explored its relationship with gender, religion, and political orientation. We collected 89 responses and analyzed the data. The findings indicate that individuals with right-leaning political views, certain religious affiliations, and male respondents were more likely to deny climate change. These results highlight the need for targeted educational approaches that address specific audiences, fostering a better understanding of the scientific and environmental realities of climate change, and ultimately promoting informed action toward sustainability. Full article
Show Figures

Figure 1

41 pages, 6244 KB  
Article
A Holistic Framework for Optimizing CO2 Storage: Reviewing Multidimensional Constraints and Application of Automated Hierarchical Spatiotemporal Discretization Algorithm
by Ismail Ismail, Sofianos Panagiotis Fotias and Vassilis Gaganis
Energies 2025, 18(22), 5926; https://doi.org/10.3390/en18225926 - 11 Nov 2025
Viewed by 109
Abstract
Climate change mitigation demands scalable, technologically mature solutions capable of addressing emissions from hard-to-abate sectors. Carbon Capture and Storage (CCS) offers one of the few ready pathways for deep decarbonization by capturing CO2 at large point sources and securely storing it in [...] Read more.
Climate change mitigation demands scalable, technologically mature solutions capable of addressing emissions from hard-to-abate sectors. Carbon Capture and Storage (CCS) offers one of the few ready pathways for deep decarbonization by capturing CO2 at large point sources and securely storing it in deep geological formations. The long-term viability of CCS depends on well control strategies/injection schedules that maximize storage capacity, maintain containment integrity, ensure commercial deliverability and remain economically viable. However, current practice still relies heavily on manual, heuristic-based well scheduling, which struggles to optimize storage capacity while minimizing by-products such as CO2 recycling within the high-dimensional space of interdependent technical, commercial, operational, economic and regulatory constraints. This study makes two contributions: (1) it systematically reviews, maps and characterizes these multidimensional constraints, framing them as an integrated decision space for CCS operations, and (2) it introduces an industry-ready optimization framework—Automated Optimization of Well control Strategies through Dynamic Time–Space Discretization—which couples reservoir simulation with constraint-embedded, hierarchical refinement in space and time. Using a modified genetic algorithm, injection schedules evolve from coarse to fine resolution, accelerating convergence while preserving robustness. Applied to a heterogeneous saline aquifer model, the method was tested under both engineering and financial objectives. Compared to an industry-standard manual schedule, optimal solutions increased net stored CO2 by 14% and reduced recycling by 22%, raising retention efficiency to over 95%. Under financial objectives, the framework maintained these technical gains while increasing cumulative cash flow by 23%, achieved through leaner, smoother injection profiles that minimize costly by-products. The results confirm that the framework’s robustness, scalability and compatibility with commercial simulators make it a practical pathway to enhance CCS performance and accelerate deployment at scale. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

14 pages, 1286 KB  
Article
Cytokinin- and Auxin-Based Plant Growth Regulators Enhance Cell Expansion, Yield Performance, and Fruit Quality in ‘Maxi Gala’ Apple Fruits in Southern Brazil
by Sabrina Baldissera, Alex Felix Dias, Joel de Castro Ribeiro, Renaldo Borges de Andrade Júnior, Bruno Pirolli, Euvaldo de Sousa Costa Júnior, Poliana Francescatto, Polliana D’Angelo Rios, Daiana Petry Rufato, Amauri Bogo and Leo Rufato
Agriculture 2025, 15(22), 2339; https://doi.org/10.3390/agriculture15222339 - 11 Nov 2025
Viewed by 214
Abstract
Cytokinin- and Auxin-Based Plant Growth Regulators (PGRs) are commonly employed to increase fruit size due to their ability to modulate cellular structure. This study aimed to evaluate the effects of different PGR application protocols on histological parameters, yield components, and fruit quality in [...] Read more.
Cytokinin- and Auxin-Based Plant Growth Regulators (PGRs) are commonly employed to increase fruit size due to their ability to modulate cellular structure. This study aimed to evaluate the effects of different PGR application protocols on histological parameters, yield components, and fruit quality in ‘Maxi Gala’ apple. The experiments were carried out under humid subtropical conditions of southern Brazil across two growing seasons (2021/22 and 2022/23), allowing comparison of treatment performance under distinct climatic patterns. Data from common treatments were combined across years for integrated analysis. The PGRs used included 6-benzyladenine (BA) as a cytokinin source; naphthalene acetic acid (NAA) as an auxin source; and tryptophan, a precursor of auxin biosynthesis. PGRs were applied in various combinations and concentrations between 10 days after dormancy break (BBCH 01) and fruit diameters of 25–27 mm (BBCH 74), following a randomized block design with four replicates of twelve trees each. The multivariate analysis of treatments was performed using Principal Component Analysis (PCA). Additionally, an analysis of variance was performed for flesh firmness loss, with means compared using Tukey’s test (p < 0.05). PGRs significantly influenced only the histological parameters of the fruit flesh tissues. BA and tryptophan had the greatest effects on cell size and cell number in the fruit flesh, respectively, both reducing intercellular spaces. Tryptophan was associated with a higher number of smaller cells, whereas NAA promoted larger cell sizes. The combination of BA and NAA, as well as a single application of BA at petal fall, resulted in the highest yield performances and increased the proportion of large fruits. Furthermore, BA enhanced the percentage of red skin coloration and improved flesh firmness during storage. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

29 pages, 12527 KB  
Review
Concept for the Future Utilization of Lunar Underground Space and Adaptive Design Strategies
by Xing Xu and Minghui Xue
Buildings 2025, 15(22), 4057; https://doi.org/10.3390/buildings15224057 - 11 Nov 2025
Viewed by 259
Abstract
Amid long-term human consumption of surface resources and the intensifying climate crisis, underground space has increasingly attracted attention as a viable alternative for habitation, survival, and urban resilience. Historical and contemporary examples—from the Derinkuyu Underground City in Cappadocia, Turkey, to Iran’s “Shavadan” cooling [...] Read more.
Amid long-term human consumption of surface resources and the intensifying climate crisis, underground space has increasingly attracted attention as a viable alternative for habitation, survival, and urban resilience. Historical and contemporary examples—from the Derinkuyu Underground City in Cappadocia, Turkey, to Iran’s “Shavadan” cooling system, as well as subterranean dwellings in hot arid regions such as the Berbers’ homes in Tunisia and miners’ settlements in Coober Pedy, Australia, and underground complexes in cold regions like Harbin, Sapporo, and Helsinki—demonstrate the significant advantages of underground spaces in thermal regulation, protection from extreme weather, and efficient resource utilization. With climate change driving increasingly frequent and severe extreme weather events, including tornadoes, typhoons, and prolonged droughts, surface buildings face growing vulnerability, further emphasizing the potential of underground space for sustainable urban development. In parallel, advances in science and technology, particularly in space exploration, have accumulated extensive practical knowledge, creating pathways to extend terrestrial construction experience into extraterrestrial environments. The Moon, despite its strategic significance and potential resource value, presents an extremely hostile surface environment characterized by microgravity, near-vacuum conditions, extreme diurnal temperature variations of several hundred degrees, and very low thermal conductivity, all of which render conventional surface habitation challenging and prohibitively costly. Consequently, contemporary research has gradually shifted focus from lunar surface facilities toward the development and utilization of lunar underground spaces, which could provide enhanced environmental stability and habitation potential. This paper reviews the historical development and current research on lunar underground space utilization, proposes five guiding principles for its progressive exploration and construction, and presents a phased “1.0–4.0 era” framework for systematic development. Additionally, based on an adaptive design theoretical framework, spatial, environmental, and climatic strategies are proposed to guide future lunar habitation and ensure sustainable extraterrestrial development, providing a comprehensive reference for long-term planning and construction of lunar underground habitats. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 9934 KB  
Article
Enhanced Detection of Drought Events in California’s Central Valley Basin Using Rauch–Tung–Striebel Smoothed GRACE Level-2 Data: Mechanistic Insights from Climate–Hydrology Interactions
by Yong Feng, Nijia Qian, Qingqing Tong, Yu Cao, Yueyang Huan, Yuhua Zhu and Dehu Yang
Remote Sens. 2025, 17(22), 3683; https://doi.org/10.3390/rs17223683 - 10 Nov 2025
Viewed by 182
Abstract
To mitigate the impact of north–south strip errors inherent in Gravity Recovery and Climate Experiment (GRACE) spherical harmonic coefficient solutions, this research develops a state-space model to generate a more robust solution. The efficacy of the state-space model is demonstrated by comparing its [...] Read more.
To mitigate the impact of north–south strip errors inherent in Gravity Recovery and Climate Experiment (GRACE) spherical harmonic coefficient solutions, this research develops a state-space model to generate a more robust solution. The efficacy of the state-space model is demonstrated by comparing its performance with that of conventional filtering methods and hydrological modeling schemes. The method is subsequently applied to estimate the GRACE Groundwater Drought Index in the California Central Valley basin, a region significantly affected by drought during the GRACE observation period. This analysis quantifies the severity of droughts and floods while investigating the direct influences of precipitation, runoff, evaporation, and anthropogenic activities. By incorporating the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation, the study offers a detailed causal analysis and proposes a novel methodology for water resource management and disaster early warning. The results indicate that a moderate-duration flood event in 2006 resulted in a recharge of 19.81 km3 of water resources in the California Central Valley basin, whereas prolonged droughts in 2008 and 2013, lasting over 15 months, led to groundwater depletion of 41.53 km3 and 91.45 km3, respectively. Precipitation and runoff are identified as the primary determinants of local drought and flood conditions. The occurrence of ENSO events correlates with sustained precipitation variations over the subsequent 2–3 months, resulting in corresponding changes in groundwater storage. Full article
Show Figures

Figure 1

38 pages, 3977 KB  
Review
Biomass for Residential Heating: A Review of Technologies, Applications, and Sustainability Aspects
by Jakub Katerla and Krzysztof Sornek
Energies 2025, 18(22), 5875; https://doi.org/10.3390/en18225875 - 7 Nov 2025
Viewed by 290
Abstract
Biomass has long been a major source of energy for residential heating and, in recent decades, has regained attention as a renewable alternative to fossil fuels. This review explores the current state and prospects of domestic biomass-based heating technologies, including biomass-fired boilers, local [...] Read more.
Biomass has long been a major source of energy for residential heating and, in recent decades, has regained attention as a renewable alternative to fossil fuels. This review explores the current state and prospects of domestic biomass-based heating technologies, including biomass-fired boilers, local space heaters, and hybrid systems that integrate biomass with complementary renewable energy sources to deliver heat, electricity, and cooling. The review was conducted to identify key trends, performance data, and innovations in conversion technologies, fuel types, and efficiency enhancement strategies. The analysis highlights that biomass is increasingly recognized as a viable energy carrier for energy-efficient, passive, and nearly zero-energy buildings, particularly in cold climates where heating demand remains high. The analysis of the available studies shows that modern biomass-fired systems can achieve high energy performance while reducing environmental impact through advanced combustion control, optimized heat recovery, and integration with low-temperature heating networks. Overall, the findings demonstrate that biomass-based technologies, when designed and sourced efficiently and sustainably, can play a significant role in decarbonizing the residential heating sector and advancing nearly zero-energy building concepts. Full article
(This article belongs to the Special Issue Novel and Emerging Energy Systems)
Show Figures

Figure 1

22 pages, 7941 KB  
Article
Comparison Between Experimental and Simulated Hygrothermal Response of Chopped-Straw- and Cellulose-Insulated Wood Frame Panels
by Brock Conley and Mark Carver
Buildings 2025, 15(22), 4017; https://doi.org/10.3390/buildings15224017 - 7 Nov 2025
Viewed by 192
Abstract
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied [...] Read more.
Achieving a decarbonized built environment in Canada requires proven, resilient, and scalable building envelope assemblies. In 2022, building operations accounted for 18% of Canada’s greenhouse gas (GHG) emissions, with space heating responsible for nearly two-thirds of this total. Alongside operational carbon reductions, embodied carbon emissions—stemming from the production and transport of building materials—must be prioritized during the design phase. Without intervention, construction materials could consume up to half of the remaining global 1.5 °C carbon budget by 2050. This paper highlights NRCan’s prototype, low-carbon, prefabricated panels filled with chopped straw and cellulose insulation under the Prefabricated Exterior Energy Retrofit (PEER) research project. The research advances confidence in performance and durability of biogenic materials by conducting controlled experiments, guarded hot box testing, and hygrothermal modelling. These panels present a promising pathway to drastically lower embodied carbon in the built environment. The validated hygrothermal model, accurate to between 3% and 7, enables assessment of hygrothermal performance across Canadian climates, retrofit scenarios and future climate conditions. This work supports the evidence for low-carbon or bio-based materials as a solution for Canada’s built environment. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

30 pages, 3274 KB  
Article
Development of a Smart and Sustainable Rating System Platform for Saudi Neighborhoods
by Salma Dahab, Yusuf A. Adenle and Habib M. Alshuwaikhat
Urban Sci. 2025, 9(11), 466; https://doi.org/10.3390/urbansci9110466 - 6 Nov 2025
Viewed by 302
Abstract
Cities around the world are facing growing challenges related to climate change, urban sprawl, infrastructure strain, and digital transformation. In response, smart and sustainable urban development has become a global focus, aiming to integrate technology and environmental stewardship to improve the quality of [...] Read more.
Cities around the world are facing growing challenges related to climate change, urban sprawl, infrastructure strain, and digital transformation. In response, smart and sustainable urban development has become a global focus, aiming to integrate technology and environmental stewardship to improve the quality of life. The smart and sustainable city concept is typically applied at the city scale; however, its impact is most tangible at the neighborhood level, where residents interact directly with infrastructure, services, and community spaces. A variety of global frameworks have been developed to assess sustainability and technological integration. However, these models often fall short in addressing localized needs, particularly in regions with distinct environmental and cultural contexts. In Saudi Arabia, Vision 2030 emphasizes livability, sustainability, and digital transformation, yet there remains a lack of tailored tools to evaluate smart and sustainable progress at the neighborhood scale. This study develops HayyScore, a localized evaluation framework and prototype digital platform developed to assess neighborhood performance across five core categories: (i) Environment and Urban Resilience, (ii) Smart Infrastructure and Governance, (iii) Mobility and Accessibility, (iv) Quality of Life and Social Inclusion, and (v) Economy and Innovation. The HayyScore platform operationalizes this framework through an interactive web-based tool that allows users to input data through structured forms, calculate scores, receive category-based and overall certification levels, and view results through visual dashboards. The methodology involved a comprehensive review of global frameworks, expert input to define localized indicators, and iterative prototyping of the platform using Python 3.13.5 and Streamlit 1.45.1. To demonstrate its practical application, the prototype was tested on two Saudi neighborhoods: King Abdullah Petroleum Studies and Research Center (KAPSARC) and King Fahd University of Petroleum and Minerals (KFUPM). Key platform features include automated scoring logic, category weighting, certification generation, dynamic performance charts, and a rankings page for comparing multiple neighborhoods. The platform is designed to be scalable, with the ability to add new indicators, support multilingual access, and integrate with real-time data systems in future iterations. Full article
Show Figures

Figure 1

18 pages, 1801 KB  
Article
Ecological Outcomes and Societal Transformation: Multiple Visions for Adaptation in the Great Barrier Reef
by Gillian Paxton, Stewart Lockie, Rana Dadpour, Henry A. Bartelet and Bruce Taylor
Sustainability 2025, 17(21), 9906; https://doi.org/10.3390/su17219906 - 6 Nov 2025
Viewed by 314
Abstract
Fears regarding the future of coral reefs are reflected in a growing scientific effort, worldwide, to help corals survive and adapt to the impacts of climate change through new management strategies. To be viable, these strategies must not only be ecologically beneficial and [...] Read more.
Fears regarding the future of coral reefs are reflected in a growing scientific effort, worldwide, to help corals survive and adapt to the impacts of climate change through new management strategies. To be viable, these strategies must not only be ecologically beneficial and technically feasible; they must be developed in partnership with Indigenous peoples and sensitive to the needs and aspirations of local communities, stakeholders and broader publics. This paper synthesizes insights from a comprehensive program of qualitative and quantitative social research, conducted through Australia’s Reef Restoration and Adaptation Program, exploring local community and public perspectives on the Great Barrier Reef (GBR) and the prospect of assisted adaptation. While the results of this research indicate strong support for prospective interventions to help the GBR, they also demonstrate that local communities and the broader Australian public hold multiple visions for the GBR’s future and engage in careful processes to imagine and evaluate assisted adaptation. We discuss the implications of this complexity for the development of technically robust and socially responsible adaptation intervention in the GBR, emphasizing the opportunities it presents for robust and inclusive dialogue, knowledge building, and governance around these strategies. Community and public support, we conclude, is contingent on moving beyond the seemingly straightforward question of whether or not people support intervention and towards forms of engagement that allow space for social and cultural diversity and the co-creation of ethically grounded adaptation pathways. Full article
Show Figures

Figure 1

39 pages, 14066 KB  
Article
Climatic Adaptability of Transitional Space in Traditional Courtyard Dwellings of Jinhua: A Case Study of the Lu Residence in Dongyang
by Jiaqi Wang, Huijie Liu and Li Bao
Buildings 2025, 15(21), 3999; https://doi.org/10.3390/buildings15213999 - 5 Nov 2025
Viewed by 215
Abstract
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing [...] Read more.
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing energy-efficiency codes in these regions, emphasizing high airtightness and strong insulation, have revealed shortcomings such as poor indoor air quality and insufficient summer ventilation. This study takes the Lu Residence in Dongyang, Jinhua, Zhejiang Province, as the primary case. It systematically examines the coupling mechanisms between the geometric configurations of transitional space in traditional courtyard dwellings and their environmental physical parameters using field surveys, multi-parameter environmental monitoring, and computer simulations. The results identify the optimal orientations and geometric parameters that balance summer ventilation with winter thermal buffering in hot-summer and cold-winter regions. The primary conclusions of this research are as follows: (1) The optimal orientation for axial buildings lies between 15° west of south and 15° east of south, as well as 30–60° east or west of south, with an angle of 45–60° in relation to the prevailing annual wind direction for all buildings. (2) The optimal height-to-width ratio of the courtyard is less than 1:2.5, while the range of the length-to-width ratio extends from 1:0.5 to 1:0.7. (3) The optimal eave depth varies from 900 to 1500 mm, effectively balancing winter heat retention and summer shading; however, a depth of 2400 mm is primarily advantageous for shading purposes. Furthermore, these findings are applied to the design of a new guesthouse within the conservation area of the Xu Zhen Er Gong Ancestral Hall in Yongkang, establishing a climate–geometry matching mechanism for transitional spaces. The study demonstrates that transitional space can serve as effective passive regulators, offering a scientific and sustainable pathway for the adaptive continuation of traditional courtyard architecture. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 3138 KB  
Article
Resilience and Liveability as Drivers of Sustainability: The Case of UBC’s Public Spaces
by Marichela Sepe
Sustainability 2025, 17(21), 9878; https://doi.org/10.3390/su17219878 - 5 Nov 2025
Viewed by 398
Abstract
Environmental sustainability and resilience have become urgent priorities in contemporary urban planning as cities confront the disruptive impacts of climate change, extreme weather, and global health crises. Within this framework, university campuses increasingly act as catalysts for sustainable urban transformation. This research, developed [...] Read more.
Environmental sustainability and resilience have become urgent priorities in contemporary urban planning as cities confront the disruptive impacts of climate change, extreme weather, and global health crises. Within this framework, university campuses increasingly act as catalysts for sustainable urban transformation. This research, developed within the LOVE Sapienza and NARRATES projects, seeks to identify the key factors that enhance the liveability of campus public spaces and to propose a dedicated methodology, supported by the case study of the University of British Columbia (UBC) in Vancouver. The proposed approach integrates spatial analyses, field observations, and perceptual mapping aligned with the principles of the Charter for Resilient and Liveable Public Spaces. UBC exemplifies how biophilic design, inclusive governance, and art-based placemaking can strengthen resilience, social cohesion, and cultural identity. The study contributes a transferable framework for designing and managing campus public spaces as drivers of sustainability and urban regeneration. Full article
Show Figures

Figure 1

Back to TopTop