Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change
Highlights
- The three mainstream mascon as well as COST-G-based grids show good consistency over the AIS, while large differences occurred in APIS.
- Significant differences among these four grids existed in the annual mass change in 2016 and the interannual signals from mid-2016 to mid-2018.
- One or more mascon or COST-G-based grids can be selected for application to perform further studies over the AIS. Caution should be taken when applying these grids over the APIS.
- This study sheds light on the way to improve the quality of GRACE/GRACE-FO grid products; i.e., refining the algorithms for the APIS and updating the grids at the late stage of the GRACE mission.
Abstract
1. Introduction
2. Data and Methods
2.1. GRACE/GRACE-FO Data
2.1.1. CSR Mascon
2.1.2. JPL Mascon
2.1.3. GSFC Mascon
2.1.4. Dataset Based on COST-G from the GravIS
2.2. Methods
2.2.1. The Gap-Filling Method
2.2.2. Method for Extracting Linear Trend and Interannual Variations
2.2.3. Correlation Analysis Through ICC
3. Results
3.1. Mass Change Time Series of the AIS and Its Subregions
3.2. Linear Trends and Accelerations of Mass Change in the AIS and Its Subregions
3.3. Patterns of Seasonal and Annual Mass Change in the AIS
3.4. Interannual Mass Variations of the AIS and Its Subregions
4. Discussion
5. Conclusions
- (1)
- A high degree of consistency is found among these four mass change time series derived separately from CSR, JPL, GSFC, and COST-G over the AIS and its subregions, with ICC values larger than 0.94. Such a consistency is reflected by the similarities shown at multiple temporal scales including the relatively long-term trend, monthly variation, annual variation and the interannual variations. Similar spatial patterns are also found among mass accelerations derived from the four GRACE/GRACE-FO grid products, i.e., the APIS and George V Land show a positive acceleration of approximately 3 Gt/yr2, while the ASE and Wilkes Land have a negative acceleration of approximately −4 Gt/yr2.
- (2)
- Significant differences are shown among the annual mass changes of the AIS during the period of 2016–2017. When excluding annual mass changes during 2016–2017, the ICC values among annual mass variations derived from these four datasets increase significantly over the AIS, WAIS and EAIS, respectively. This indicates that mascon and COST-G-based grid data during the late stage of GRACE mission has an important impact on quantifying the consistency among these four gridded data. However, over the APIS, the ICC value slightly decline. This reflects that the consistency among these four datasets in the cases excluding the years 2016 and 2017 is no better than that in the case including the years 2016 and 2017.
- (3)
- From 2016 to 2018, the interannual signals from JPL mascon and COST-G-based grid products showed significant differences with those from CSR/GSFC mascon data over the AIS. The interannual signals of JPL mascon display the feature of “mass increasing first and later decreasing”, while the interannual signals from CSR/GSFC products show relatively stable mass variations. The above differences are mainly caused by discrepancies among interannual mass variations over the EAIS at the late stage of GRACE mission.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acronyms | The full name |
| AIS | Antarctic Ice Sheet |
| GRACE | Gravity Recovery and Climate Experiment |
| GRACE-FO | Gravity Recovery and Climate Experiment Follow-On |
| CSR | Center for Space Research |
| JPL | Jet Propulsion Laboratory |
| GFZ | German Research Centre for Geosciences |
| GSFC | Goddard Space Flight Center |
| COST-G | Combination Service for Time-variable Gravity fields |
| GravIS | Gravity Information Service |
| C20 | degree 2 order 0 |
| C30 | degree 3 order 0 |
| GIA | glacial isostatic adjustment |
| SSA | singular spectrum analysis |
| ICC | Intraclass correlation coefficient |
| APIS | Antarctic Peninsula ice sheet |
| WAIS | West Antarctic ice sheet |
| EAIS | East Antarctic ice sheet |
| Mascon | Mass concentration |
| SH | Spherical Harmonics |
References
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Rowlands, D.D.; Luthcke, S.B.; Klosko, S.M.; Lemoine, F.G.R.; Chinn, D.S.; McCarthy, J.J.; Cox, C.M.; Anderson, O.B. Resolving Mass Flux at High Spatial and Temporal Resolution Using GRACE Intersatellite Measurements. Geophys. Res. Lett. 2005, 32, L04310. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Sabaka, T.J.; Loomis, B.D.; Arendt, A.A.; McCarthy, J.J.; Camp, J. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution. J. Glaciol. 2013, 59, 613–631. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-Resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Houborg, R.; Rodell, M.; Li, B.; Reichle, R.; Zaitchik, B.F. Drought Indicators Based on Model-Assimilated Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage Observations. Water Resour. Res. 2012, 48, W07525. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications: Global Analysis of Grace Mascon Products. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, J.; Guo, S.; Slater, L. Continuity of Terrestrial Water Storage Variability and Trends across Mainland China Monitored by the GRACE and GRACE-Follow on Satellites. J. Hydrol. 2021, 599, 126308. [Google Scholar] [CrossRef]
- Xie, P.; Yi, S. Gap-Filling Products for Three GRACE/GRACE-FO Mascon Solutions. Geod. Geodyn. 2025, 16, 223–229. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States. Water Resour. Res. 2009, 45, W05410. [Google Scholar] [CrossRef]
- Djessou, R.D.; Wan, X.; Yi, S.; Annan, R.F.; Su, X.; Wang, S. Water Storage Variation and Its Possible Causes Detected by GRACE in the Volta River Basin. Remote Sens. 2022, 14, 5319. [Google Scholar] [CrossRef]
- Tong, J.; Shi, Z.; Jiao, J.; Yang, B.; Tian, Z. Glacier Mass Balance and Its Impact on Land Water Storage in the Southeastern Tibetan Plateau Revealed by ICESat-2 and GRACE-FO. Remote Sens. 2024, 16, 1048. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; Van Den Broeke, M.; Van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Zhang, C.; Shum, C.K.; Bezděk, A.; Bevis, M.; De Teixeira Da Encarnação, J.; Tapley, B.D.; Zhang, Y.; Su, X.; Shen, Q. Rapid Mass Loss in West Antarctica Revealed by Swarm Gravimetry in the Absence of GRACE. Geophys. Res. Lett. 2021, 48, e2021GL095141. [Google Scholar] [CrossRef]
- Ciracì, E.; Velicogna, I.; Swenson, S. Continuity of the Mass Loss of the World’s Glaciers and Ice Caps from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2019GL086926. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. Continuous Estimates of Glacier Mass Balance in High Mountain Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data. Geophys. Res. Lett. 2021, 48, e2020GL090954. [Google Scholar] [CrossRef]
- He, M.; Li, Z.; Jiang, W.; Pan, Y.; Jiao, J.; Xiao, Y. Seasonal and Interannual Fluctuations of Glacier Mass Balance and Climate Response Processes on the Tibetan Plateau Based on GRACE/GRACE-FO. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4301709. [Google Scholar] [CrossRef]
- Shang, P.; Su, X.; Luo, Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sens. 2022, 14, 4442. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Blankenship, D.; Young, D. Antarctic Regional Ice Loss Rates from GRACE. Earth Planet. Sci. Lett. 2008, 266, 140–148. [Google Scholar] [CrossRef]
- Ramillien, G.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual Variations of the Mass Balance of the Antarctica and Greenland Ice Sheets from GRACE. Glob. Planet. Change 2006, 53, 198–208. [Google Scholar] [CrossRef]
- Loomis, B.D.; Felikson, D.; Sabaka, T.J.; Medley, B. High-Spatial-Resolution Mass Rates from GRACE and GRACE-FO: Global and Ice Sheet Analyses. J. Geophys. Res. Solid Earth 2021, 126, e2021JB023024. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Šprlák, M.; Han, S.-C. Determination of Ellipsoidal Surface Mass Change from GRACE Time-Variable Gravity Data. Geophys. J. Int. 2019, 219, 248–259. [Google Scholar] [CrossRef]
- Hao, M.; Freymueller, J.T.; Wang, Q.; Cui, D.; Qin, S. Vertical Crustal Movement around the Southeastern Tibetan Plateau Constrained by GPS and GRACE Data. Earth Planet. Sci. Lett. 2016, 437, 1–8. [Google Scholar] [CrossRef]
- Rao, W.; Sun, W. Moho Interface Changes Beneath the Tibetan Plateau Based on GRACE Data. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020605. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, W.; Ding, H.; Shum, C.K.; Jiao, J.; Xiao, Y.; Wu, Q. Interannual Variability of Vertical Land Motion over High Mountain Central Asia from GPS and GRACE/GRACE-FO Observations. GPS Solut. 2023, 27, 168. [Google Scholar] [CrossRef]
- Tanaka, Y.; Heki, K.; Matsuo, K.; Shestakov, N.V. Crustal Subsidence Observed by GRACE after the 2013 Okhotsk Deep-focus Earthquake. Geophys. Res. Lett. 2015, 42, 3204–3209. [Google Scholar] [CrossRef]
- Dahle, C.; Boergens, E.; Sasgen, I.; Döhne, T.; Reißland, S.; Dobslaw, H.; Klemann, V.; Murböck, M.; König, R.; Dill, R.; et al. GravIS: Mass Anomaly Products from Satellite Gravimetry. Earth Syst. Sci. Data 2025, 17, 611–631. [Google Scholar] [CrossRef]
- King, M.A.; Christoffersen, P. Major Modes of Climate Variability Dominate Nonlinear Antarctic Ice-Sheet Elevation Changes 2002–2020. Geophys. Res. Lett. 2024, 51, e2024GL108844. [Google Scholar] [CrossRef]
- Pattyn, F.; Morlighem, M. The Uncertain Future of the Antarctic Ice Sheet. Science 2020, 367, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, X.; Jiao, J.; Ding, H.; Shum, C.K. Geodetic Evidence of the Interannual Fluctuations and Long-Term Trends Over the Antarctic Ice Sheet Mass Change. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4525–4535. [Google Scholar] [CrossRef]
- Wang, W.; Shen, Y.; Chen, Q.; Wang, F. Unprecedented Mass Gain over the Antarctic Ice Sheet between 2021 and 2022 Caused by Large Precipitation Anomalies. Environ. Res. Lett. 2023, 18, 124012. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four Decades of Antarctic Ice Sheet Mass Balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef]
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.-J.; Amory, C.; Van Den Broeke, M.R.; Horwath, M.; Joughin, I.; King, M.D.; Krinner, G.; et al. Mass Balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020. Earth Syst. Sci. Data 2023, 15, 1597–1616. [Google Scholar] [CrossRef]
- Davison, B.J.; Hogg, A.E.; Rigby, R.; Veldhuijsen, S.; Van Wessem, J.M.; Van Den Broeke, M.R.; Holland, P.R.; Selley, H.L.; Dutrieux, P. Sea Level Rise from West Antarctic Mass Loss Significantly Modified by Large Snowfall Anomalies. Nat. Commun. 2023, 14, 1479. [Google Scholar] [CrossRef] [PubMed]
- Bodart, J.A.; Bingham, R.J. The Impact of the Extreme 2015–2016 El Niño on the Mass Balance of the Antarctic Ice Sheet. Geophys. Res. Lett. 2019, 46, 13862–13871. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y.; Liu, L.; Yang, Y. Interannual Ice Mass Variations over the Antarctic Ice Sheet from 2003 to 2017 Were Linked to El Niño-Southern Oscillation. Earth Planet. Sci. Lett. 2021, 560, 116796. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.N.; Landerer, F.W.; Luthcke, S.B. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophys. Res. Lett. 2020, 47, e2019GL085488. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E.; Luthcke, S.B. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise. Geophys. Res. Lett. 2019, 46, 6910–6917. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. J. Geophys. Res. Solid Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Jäggi, A.; Meyer, U.; Lasser, M.; Jenny, B.; Lopez, T.; Flechtner, F.; Dahle, C.; Förste, C.; Mayer-Gürr, T.; Kvas, A.; et al. International Combination Service for Time-Variable Gravity Fields (COST-G). In Beyond 100: The Next Century in Geodesy; Freymueller, J.T., Sánchez, L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 57–65. [Google Scholar]
- Horvath, A.; Murböck, M.; Pail, R.; Horwath, M. Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information. Geosciences 2018, 8, 323. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. J. Geophys. Res. Earth 2008, 113, B08410. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Roaldsen, K.S. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Chen, J.; Tapley, B.; Tamisiea, M.E.; Save, H.; Wilson, C.; Bettadpur, S.; Seo, K.-W. Error Assessment of GRACE and GRACE Follow-On Mass Change. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022124. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Li, J.; Zhang, Z. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica. J. Geod. 2015, 89, 925–940. [Google Scholar] [CrossRef]








| Regions | ICCs for Mass Change Time Series 2003.01–2023.12 | ICCs for Annual Mass Variations 2003–2023 | ICCs for Interannual Mass Variations 2003.07–2023.07 | |||
|---|---|---|---|---|---|---|
| With Gap Period | Without Gap Period | With Year 2016, 2017 | Without Year 2016, 2017 | With Gap Period | Without Gap Period | |
| AIS | 0.98 | 0.98 | 0.75 | 0.84 | 0.87 | 0.91 |
| APIS | 0.94 | 0.94 | 0.79 | 0.77 | 0.94 | 0.95 |
| WAIS | 0.99 | 0.99 | 0.82 | 0.88 | 0.96 | 0.97 |
| EAIS | 0.97 | 0.97 | 0.79 | 0.85 | 0.92 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Q.; Su, X. Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change. Remote Sens. 2025, 17, 3699. https://doi.org/10.3390/rs17223699
Long Q, Su X. Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change. Remote Sensing. 2025; 17(22):3699. https://doi.org/10.3390/rs17223699
Chicago/Turabian StyleLong, Qing, and Xiaoli Su. 2025. "Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change" Remote Sensing 17, no. 22: 3699. https://doi.org/10.3390/rs17223699
APA StyleLong, Q., & Su, X. (2025). Assessing the Consistency Among Three Mascon Solutions and COST-G-Based Grid Products for Characterizing Antarctic Ice Sheet Mass Change. Remote Sensing, 17(22), 3699. https://doi.org/10.3390/rs17223699
