Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,828)

Search Parameters:
Keywords = climatic region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
20 pages, 8429 KiB  
Article
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 (registering DOI) - 6 Aug 2025
Abstract
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and [...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development. Full article
Show Figures

Figure 1

20 pages, 11969 KiB  
Article
Spatiotemporal Variability of Cloud Parameters and Their Climatic Impacts over Central Asia Based on Multi-Source Satellite and ERA5 Data
by Xinrui Xie, Liyun Ma, Junqiang Yao and Weiyi Mao
Remote Sens. 2025, 17(15), 2724; https://doi.org/10.3390/rs17152724 - 6 Aug 2025
Abstract
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation [...] Read more.
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation remain poorly understood. This study uses reanalysis and multi-source remote sensing datasets to investigate the spatiotemporal characteristics of clouds and their influence on regional climate. The cloud cover increases from the southwest to the northeast, with mid and low-level clouds predominating in high-altitude regions. All clouds have shown a declining trend during 1981–2020. According to satellite data, the sharpest decline in total cloud cover occurs in summer, while reanalysis data show a more significant reduction in spring. In addition, cloud cover changes influence the local climate through radiative forcing mechanisms. Specifically, the weakening of shortwave reflective cooling and the enhancement of longwave heating of clouds collectively exacerbate surface warming. Meanwhile, precipitation is positively correlated with cloud cover, and its spatial distribution aligns with the cloud water path. The cloud phase composition in Central Asia is dominated by liquid water, accounting for over 40%, a microphysical characteristic that further impacts the regional hydrological cycle. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 2090 KiB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
12 pages, 1362 KiB  
Article
Physiological Response to Foliar Application of Antitranspirant on Avocado Trees (Persea americana) in a Mediterranean Environment
by Giulia Modica, Fabio Arcidiacono, Stefano La Malfa, Alessandra Gentile and Alberto Continella
Horticulturae 2025, 11(8), 928; https://doi.org/10.3390/horticulturae11080928 (registering DOI) - 6 Aug 2025
Abstract
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by [...] Read more.
Background: The implementation of advanced agronomical strategies, including the use of antitranspirant, in order to mitigate the negative effects of environmental stress, particularly heat stress on plants, has become a focal area of research in the Mediterranean basin. This region is characterized by hot and dry summer that affects plant physiology. Methods: The experiment was carried out in Sicily (South Italy) on 12-year-old avocado cv. Hass grafted onto Walter Hole rootstock. Two subplots each of forty homogenous trees were selected and treated (1) with calcium carbonate (DECCO Shield®) and (2) with water (control) at the following phenological phases: 711, 712 and 715 BBCH. The climatic parameters were recorded throughout the year. Physiological measurements (leaf transpiration, net photosynthesis, stomatal conductance, leaf water potential) were measured at 105, 131 and 168 days after full bloom. Fruit growth was monitored, and physico-chemical analyses were carried out at harvest. Results: The antitranspirant increased photosynthesis and stomatal conductance and reduced leaf transpiration (−26.1%). Fruit growth rate increased during summer, although no morphological and qualitative difference was observed at harvest. PCA highlighted the positive effect of the calcium carbonate on overall plant physiology. Conclusions: Antitranspirant foliar application reduced heat stress effects by improving physiological responses of avocado trees. Full article
Show Figures

Figure 1

22 pages, 4692 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
28 pages, 8519 KiB  
Article
Evaluating the Microclimatic Performance of Elevated Open Spaces for Outdoor Thermal Comfort in Cold Climate Zones
by Xuan Ma, Qian Luo, Fangxi Yan, Yibo Lei, Yuyang Lu, Haoyang Chen, Yuhuan Yang, Han Feng, Mengyuan Zhou, Hua Ding and Jingyuan Zhao
Buildings 2025, 15(15), 2777; https://doi.org/10.3390/buildings15152777 - 6 Aug 2025
Abstract
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on [...] Read more.
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on warm or temperate climates, leaving a significant research gap regarding their thermal performance in cold climate zones characterized by extreme seasonal variations. Specifically, few studies have investigated how these spaces perform under conditions typical of northern Chinese cities like Xi’an, which is explicitly classified within the Cold Climate Zone according to China’s national standard GB 50176-2016 and experiences both severe summer heat and cold winter conditions. To address this gap, we conducted field measurements and numerical simulations using the ENVI-met model (v5.0) to systematically evaluate the microclimatic performance of elevated ground-floor spaces in Xi’an. Key microclimatic parameters—including air temperature, mean radiant temperature, relative humidity, and wind velocity—were assessed during representative summer and winter conditions. Our findings indicate that the height of the elevated structure significantly affects outdoor thermal comfort, identifying an optimal elevated height range of 3.6–4.3 m to effectively balance summer cooling and winter sheltering needs. These results provide valuable design guidance for architects and planners aiming to enhance outdoor thermal environments in cold climate regions facing distinct seasonal extremes. Full article
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

27 pages, 355 KiB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 - 6 Aug 2025
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

21 pages, 5063 KiB  
Article
Flood Susceptibility Assessment Based on the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS): A Case Study of the Broader Area of Megala Kalyvia, Thessaly, Greece
by Nikolaos Alafostergios, Niki Evelpidou and Evangelos Spyrou
Information 2025, 16(8), 671; https://doi.org/10.3390/info16080671 - 6 Aug 2025
Abstract
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused [...] Read more.
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused significant flooding and many damages and fatalities. The southeastern areas of Trikala were among the many areas of Thessaly that suffered the effects of these rainfalls. In this research, a flood susceptibility assessment (FSA) of the broader area surrounding the settlement of Megala Kalyvia is carried out through the analytical hierarchy process (AHP) as a multicriteria analysis method, using Geographic Information Systems (GIS). The purpose of this study is to evaluate the prolonged flood susceptibility indicated within the area due to the past floods of 2018, 2020, and 2023. To determine the flood-prone areas, seven factors were used to determine the influence of flood susceptibility, namely distance from rivers and channels, drainage density, distance from confluences of rivers or channels, distance from intersections between channels and roads, land use–land cover, slope, and elevation. The flood susceptibility was classified as very high and high across most parts of the study area. Finally, a comparison was made between the modeled flood susceptibility and the maximum extent of past flood events, focusing on that of 2023. The results confirmed the effectiveness of the flood susceptibility assessment map and highlighted the need to adapt to the changing climate patterns observed in September 2023. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

Back to TopTop