Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The NT Subpopulation
2.2. Bird Capturing and Satellite Tracking
2.3. Routes and Seasonal Differences in Migration
2.4. Analysis of Habitat Utilization and Distribution
3. Results
3.1. Migration Route and Seasonal Variation
3.2. Habitat Use
4. Discussion
4.1. Autumn and Spring Migration
4.2. Juveniles and Subadults
4.3. Short-Distance Migration Facilitates Fast Population Recovery
4.4. Habitat Protection in the Heart of the Tibetan Plateau Will Be Key to the Conservation of Waterbirds Along the Central Asian Flyway
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IUCN | International Union for Conservation of Nature |
NT | The subpopulation of the northern Tibetan lake basin |
SLCR | Selin Co National Reserve |
YZMR | Middle Reaches of the Yarlung Tsangpo River in Tibet Autonomous Region |
HXR | Hoh Xil National Nature Reserve |
SJYR | Sanjiangyuan National Nature Reserve |
RKZ | Rikaze city |
SN | Shannan city |
LZ | Linzhou county |
RR | Re River |
GWQK | GeWangQueKang |
DR | Dang River |
Appendix A
Crane ID | Departure Date/Site | Arrive Date/Site | Migration Distance (km) |
---|---|---|---|
1 | 25 October 2023 Mujiu river | 27 October 2023 Dazi county | 212.71 |
2 | 19 October 2023 Shenzha river | 20 October 2023 13:00 Qubuxiong county | 222.09 |
4 | 19 October 2023 Shenzha river | 20 October 2023 Bianxiong county | 206.03 |
5 | 18 October 2023 Geren lake | 19 October 2023 Zhaxigang county | 235.05 |
7 | 20 October 2021 Shenzha river | 22 October 2021 Xiang river | 203.37 |
9 | 29 October 2023 Mujiu river | 3 November 2023 Qubuxiong county | 199.93 |
11 | 28 October 2023 Shenzha river | 28 October 2023 Bianxiong county | 212.71 |
13 | 29 October 2023 Mujiu river | 3 November 2023 Qubuxiong county | 241.32 |
16 | 22 October 2021 Shenzha river | 22 October 2021 Bianxiong county | 208.50 |
16 | 17 July 2022 Shenzha river | 23 July 2022 Bianxiong county | 206.54 |
15 | 29 October 2023 Bianqiong river | 30 October 2023 Xiang river | 231.51 |
10 | 26 October 2023 Coer lake | 26 October 2023 Nianmu county | 349.06 |
3 | 29 October 2023 Bianqiong river | 30 October 2023 Xiang river | 299.61 |
16 | 19 October 2023 Qiare river | 20 October 2023 Nianmu county | 293.95 |
14 | 5 November 2023 Qukeluo river | 6 November 2023 Jiedexiu | 276.21 |
6 | 5 November 2023 Qukeluo river | 6 November 2023 Jiedexiu | 274.75 |
8 | 20 October 2023 Beng lake | 21 October 2023 Linzhou | 163.97 |
Crane ID | Departure Date/Site | Arrive Date/Site | Migration Distance (km) |
---|---|---|---|
3 | 25 May 2024 Bianxiong county | 26 May 2024 Xiagang river | 337.41 |
4 | 3 April 2024 Bianxiong county | 4 April 2024 Shenzha river | 546.53 |
5 | 10 May 2024 Rongma county | 14 May 2024 Duochajia river | 612.43 |
7 | 6 May 2022 Bianxiong county | 10 May 2022 Angcang river | 644.87 |
9 | 22 March 2024 Aima county | 22 March 2024 Mujiu river | 241.43 |
10 | 14 May 2024 Nianmu county | 14 May 2024 Geren lake | 267.39 |
11 | 12 May 2024 Bianxiong county | 16 May 2024 Bengna river | 305.45 |
12 | 12 May 2024 Bianxiong county | 14 May 2024 Nongren river | 428.22 |
13 | 22 March 2024 Aima county | 22 March 2024 Mujiu river | 241.11 |
15 | 11 May 2024 Aima county | 12 May 2024 Mujiu river | 272.19 |
16 | 25 March 2022 Bianxiong county | 25 March 2022 Shenzha river | 209.59 |
6 | 22 April 2024 Jiedexiu | 24 April 2024 Sang river | 460.13 |
16 | 1 May 2023 Bianxiong county | 3 May 2023 Sang river | 459.62 |
6 | 22 April 2024 Jiedexiu | 11 July 2024 Beilu river | 867.59 |
16 | 13 April 2024 Jiedexiu | 27 April 2024 Zhana river | 633.35 |
References
- Xu, Y.; Si, Y.; Wang, Y.; Zhang, Y.; Prins, H.H.T.; Cao, L.; de Boer, W.F. Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol. Appl. 2019, 29, e01960. [Google Scholar] [CrossRef] [PubMed]
- Flack, A.; Aikens, E.O.; Kolzsch, A.; Nourani, E.; Snell, K.R.S.; Fiedler, W.; Linek, N.; Bauer, H.G.; Thorup, K.; Partecke, J.; et al. New frontiers in bird migration research. Curr. Biol. 2022, 32, R1187–R1199. [Google Scholar] [CrossRef]
- Clausen, K.K.; Madsen, J.; Cottaar, F.; Kuijken, E.; Verscheure, C. Highly dynamic wintering strategies in migratory geese: Coping with environmental change. Glob. Change Biol. 2018, 24, 3214–3225. [Google Scholar] [CrossRef] [PubMed]
- Mundkur, T.; Ananzeh, A.; Chaudhary, A.; Evans, M.; Jia, Y.; Koshkina, A.; Kumar, R.; Nergui, J.; Niven, R.; Rao, M.; et al. Central Asian Flyway—Situation Analysis: The Status of Migratory Birds and Their Habitats and Recommendations for Their Conservation; BirdLife International: Cambridge, UK, 2023. [Google Scholar]
- Li, D.; Davison, G.; Lisovski, S.; Battley, P.F.; Ma, Z.J.; Yang, S.F.; How, C.B.; Watkins, D.; Round, P.; Yee, A.; et al. Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights. Sci. Rep. 2020, 10, 21232. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, D.L.; Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 2006, 46, 62–71. [Google Scholar] [CrossRef]
- Butler, P.J. High fliers: The physiology of bar-headed geese. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2010, 156, 325–329. [Google Scholar] [CrossRef]
- Scott, G.R. Elevated performance: The unique physiology of birds that fly at high altitudes. J. Exp. Biol. 2011, 214, 2455–2462. [Google Scholar] [CrossRef]
- Parr, N.; Bishop, C.M.; Batbayar, N.; Butler, P.J.; Chua, B.; Milsom, W.K.; Scott, G.R.; Hawkes, L.A. Tackling the Tibetan Plateau in a down suit: Insights into thermoregulation by bar-headed geese during migration. J. Exp. Biol. 2019, 222, jeb203695. [Google Scholar] [CrossRef]
- Bishop, C.M.; Spivey, R.J.; Hawkes, L.A.; Batbayar, N.; Chua, B.; Frappell, P.B.; Milsom, W.K.; Natsagdorj, T.; Newman, S.H.; Scott, G.R.; et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 2015, 347, 250–254. [Google Scholar] [CrossRef]
- Li, Z.M.; Li, F.S. Research on the Black-Necked Crane; Shanghai Technological and Educational Press: Shanghai, China, 2005. [Google Scholar]
- BirdLife International. Grus nigricollis. The IUCN Red List of Threatened Species 2020: E.T22692162A180030167. Available online: https://www.iucnredlist.org/species/22692162/180030167 (accessed on 22 July 2025).
- Li, F. Species review: Black–necked crane (Grus nigricollis). In IUCN SSC Crane Specialist Group—Crane Conservation Strategy; International Crane Foundation: Baraboo, WI, USA, 2019; pp. 301–312. [Google Scholar]
- Archibald, G. Observations of black–necked cranes, crane research in China. In Crane Research in China; Wang, Q., Li, F., Eds.; Yunnan Education Publishing House: Kunming, China, 2005; pp. 19–25. [Google Scholar]
- Liu, Q.; Li, F.S.; Buzzard, P.; Qian, F.W.; Zhang, F.; Zhao, J.L.; Yang, J.X.; Yang, X.J. Migration Routes and New Breeding Areas of Black-Necked Cranes. Wilson J. Ornithol. 2012, 124, 704–712. [Google Scholar] [CrossRef]
- Pu, Z.; Guo, Y.M. Autumn migration of black-necked crane (Grus nigricollis) on the Qinghai-Tibetan and Yunnan-Guizhou plateaus. Ecol. Evol. 2023, 13, e10492. [Google Scholar] [CrossRef]
- Qian, F.W.; Wu, H.Q.; Gao, L.B.; Zhang, H.G.; Li, F.S.; Zhong, X.Y.; Yang, X.J.; Zheng, G.M. Migration routes and stopover sites of Black-necked Cranes determined by satellite tracking. J. Field Ornithol. 2009, 80, 19–26. [Google Scholar] [CrossRef]
- Wang, Y.; Mi, C.; Guo, Y. Satellite tracking reveals a new migration route of black-necked cranes (Grus nigricollis) in Qinghai-Tibet Plateau. PeerJ 2020, 8, e9715. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Qian, F.W.; Li, F.S.; Gao, L.B.; Wu, H.Q. First satellite tracking of black-necked cranes in China. Zool. Res. 2005, 26, 657–658. [Google Scholar]
- Wang, Z.J.; Guo, Y.M.; Dou, Z.G.; Se, Y.J.; Yang, J.C.; Na, S.; Yu, F.Q. Autumn Migration Route and Stopover Sites of Black-necked Crane (Grus nigricollis) Breeding in Yanchiwan Nature Reserve, China. Waterbirds 2020, 43, 94–106. [Google Scholar] [CrossRef]
- Fan, J.; Yu, H. Nature protection and human development in the Selincuo region: Conflict resolution. Sci. Bull. 2019, 64, 425–427. [Google Scholar] [CrossRef]
- Li, Y.H.; Yang, L.; Luo, Y.C.; Wu, Y.Q.; Li, Z.Q. Sequential vigilance is unpredictable in reproductive Black-necked Cranes. Avian Res. 2018, 9, 44. [Google Scholar] [CrossRef]
- Barron, D.G.; Brawn, J.D.; Weatherhead, P.J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 2010, 1, 180–187. [Google Scholar] [CrossRef]
- Wang, Y.J.; Pan, Z.W.; Si, Y.L.; Wen, L.J.; Guo, Y.M. Subadult movements contribute to population level migratory connectivity. Anim. Behav. 2024, 215, 143–152. [Google Scholar] [CrossRef]
- Postlethwaite, C.M.; Brown, P.; Dennis, T.E. A new multi-scale measure for analysing animal movement data. J. Theor. Biol. 2013, 317, 175–185. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- R Core Team. Stats: The R Stats Package; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Kranstauber, B.; Smolla, M.; Scharf, A. Move: Visualizing and Analyzing Animal Track Data; Movebank: Radolfzell, Germany, 2024. [Google Scholar]
- Morrison, C.A.; Alves, J.A.; Gunnarsson, T.G.; Þórisson, B.; Gill, J.A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 2019, 9, 8856–8864. [Google Scholar] [CrossRef]
- Matyjasiak, P. Timing of arrival from spring migration is associated with flight performance in the migratory barn swallow. Behav. Ecol. Sociobiol. 2013, 67, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, J.; Zhang, Q.; Jiang, X.; Feng, A. Diurnal Variations in Surface Wind over the Tibetan Plateau. Atmosphere 2019, 10, 112. [Google Scholar] [CrossRef]
- Fayet, A.L. Exploration and refinement of migratory routes in long-lived birds. J. Anim. Ecol. 2020, 89, 16–19. [Google Scholar] [CrossRef]
- Jorge, P.E.; Sowter, D.; Marques, P.A.M. Differential Annual Movement Patterns in a Migratory Species: Effects of Experience and Sexual Maturation. PLoS ONE 2011, 6, e22433. [Google Scholar] [CrossRef]
- Péron, C.; Grémillet, D. Tracking through Life Stages: Adult, Immature and Juvenile Autumn Migration in a Long-Lived Seabird. PLoS ONE 2013, 8, e72713. [Google Scholar] [CrossRef]
- Qian, F.W.; Xie, J.G.; Yin, F.; Zhang, Z.W. Cranes in China; Post and Telecom Press: Beijing, China, 2021. [Google Scholar]
- Chen, J.; Pu, Z.; Huang, Z.; Yu, F.; Zhang, J.; Xu, D.; Xu, J.; Shang, P.; Parhati, D.; Li, Y.; et al. Global distribution and number of overwintering black-necked crane (Grus nigricollis). Biodivers. Sci. 2023, 31, 22400. [Google Scholar] [CrossRef]
- Liu, Q. Numbers and distribution of Black-necked Cranes (Grus nigricollis) wintering at Bitahai Wetland, Yunnan, China. Zool. Res. 2014, 35, 139–142. [Google Scholar]
- Zhang, G.-G.; Liu, D.; Li, F.; Qian, F.-W.; Ma, T.; Dan, D.; Lu, J. Species and populations of waterbirds wintering in the Yarlung Zangbo and its tributaries in Tibet, China. Zool. Res. 2014, 35, 92–100. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Dangles, O.; Rabatel, A.; Kraemer, M.; Zeballos, G.; Soruco, A.; Jacobsen, D.; Anthelme, F. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE 2017, 12, e0175814. [Google Scholar] [CrossRef]
- Newton, I. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 2006, 147, 146–166. [Google Scholar] [CrossRef]
- Klaassen, R.H.G.; Hake, M.; Strandberg, R.; Koks, B.J.; Trierweiler, C.; Exo, K.-M.; Bairlein, F.; Alerstam, T. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 2014, 83, 176–184. [Google Scholar] [CrossRef]
- Newton, I. Migration mortality in birds. Ibis 2025, 167, 106–123. [Google Scholar] [CrossRef]
- Jia, Y.F.; Liu, Y.Z.; Jiao, S.W.; Guo, J.; Lu, C.; Zhou, Y.; Wang, Y.Y.; Lei, G.C.; Wen, L.; Mo, X.Q. Shifting of the Migration Route of White-Naped Crane (Antigone vipio) Due to Wetland Loss in China. Remote Sens. 2021, 13, 2984. [Google Scholar] [CrossRef]
- BirdLife International. Grus nigricollis. The IUCN Red List of Threatened Species 2017, e.T22692162A110659467. Available online: https://www.iucnredlist.org/species/22692162/110659467 (accessed on 22 July 2025).
- Feng, X.B.; Wang, X.; Jia, L.Y.; Yuan, W.; Lu, M.; Liu, N.T.; Wu, F.; Cai, X.Y.; Wang, F.Y.; Lin, C.J. Influence of global warming and human activity on mercury accumulation patterns in wetlands across the Qinghai-Tibet Plateau. Natl. Sci. Rev. 2025, 12, nwae414. [Google Scholar] [CrossRef] [PubMed]
- Farrington, J.D.; Zhang, X.L. The Black-necked Cranes of the Longbao National Nature Reserve, Qinghai, China Current Status and Conservation Issues. Mt. Res. Dev. 2013, 33, 305–313. [Google Scholar] [CrossRef]
- Han, X.S.; Huettmann, F.; Guo, Y.M.; Mi, C.R.; Wen, L.J. Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Reg. Environ. Change 2018, 18, 2173–2182. [Google Scholar] [CrossRef]
- Le, Y.; Jirong, L.; Zhuoma, C.J. Number and distribution of wintering Black-necked Crane (Grus nigricollis) in Drainage Area of Yarlung Zangbo river and itstwo branches from Tibet, China. J. Northeast. For. Univ. 2016, 44, 70–72+83. (In Chinese) [Google Scholar] [CrossRef]
- Donnelly, J.P.; Moore, J.N.; Casazza, M.L.; Coons, S.P. Functional Wetland Loss Drives Emerging Risks to Waterbird Migration Networks. Front. Ecol. Evol. 2022, 10, 844278. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Wu, L.; Guo, J.; Jiao, S.W.; Ren, S.C.; Lu, C.; Wang, Y.Y.; Jia, Y.F.; Lei, G.C.; Wen, L.; et al. Habitat selection and food choice of White-naped Cranes (Grus vipio) at stopover sites based on satellite tracking and stable isotope analysis. Avian Res. 2022, 13, 100060. [Google Scholar] [CrossRef]
- Jiang, D.C.; Zhao, X.M.; López-Pujol, J.; Wang, Z.Q.; Qu, Y.H.; Zhang, Y.M.; Zhang, T.Z.; Li, D.Y.; Jiang, K.; Wang, B.; et al. Effects of climate change and anthropogenic activity on ranges of vertebrate species endemic to the Qinghai-Tibet Plateau over 40 years. Conserv. Biol. 2023, 37, e14069. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, C.B.; Song, P.F.; Liu, D.X.; Qin, W.; Jiang, F.; Gu, H.F.; Gao, H.M.; Zhang, T.Z. Threatened birds face new distribution under future climate change on the Qinghai-Tibet Plateau (QTP). Ecol. Indic. 2023, 150, 110217. [Google Scholar] [CrossRef]
- Hou, X.L.; Lu, G.Y.; Zhang, S.X.; Feng, L.P.; Ren, G.P.; Wu, H.Q. Terrestrial Nocturnal Roosting Behavior of Black-necked Cranes (Grus nigricollis) on the Yunnan-Guizhou Plateau: Active Choice or Forced Environmental Adaptation. Ecol. Evol. 2025, 15, e71485. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhan, H.F.; Saif, A.; Zhang, X.; Su, H.J. Analysis of winter survival strategies of sympatric black-necked cranes, and common cranes from the perspective of diet and gut microbiota. Ecol. Indic. 2024, 160, 111782. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, H.Q.; Hu, C.S.; Su, H.J. Overwintering Cranes, Waders, and Shorebirds versus Ducks and Coots Showed Contrasting Long-Term Population Trends in Caohai Wetland in Guizhou Province, China. Diversity 2023, 15, 985. [Google Scholar] [CrossRef]
- Zhang, M.M.; Hu, C.S.; Sun, X.J.; Su, H.J. Seasonal Migration and Daily Movement Patterns of Sympatric Overwintering Black-necked Cranes (Grus nigricollis) and Common Cranes (Grus grus) in Caohai, Guizhou, China. Waterbirds 2021, 44, 167–174. [Google Scholar] [CrossRef]
ID | Status at Capture | Tracking Period | Number of Locations |
---|---|---|---|
1 | Juvenile | 7 September 2023–28 July 2024 | 3365 |
2 | Juvenile | 7 September 2023–21 April 2024 | 5401 |
3 | Juvenile | 3 September 2023–12 September 2024 | 7887 |
4 | Juvenile | 7 September 2023–10 August 2024 | 7969 |
5 | Juvenile | 7 September 2023–14 August 2024 | 8132 |
6 | Juvenile | 31 August 2023–12 September 2024 | 8498 |
7 | Juvenile | 17 August 2021–12 September 2022 | 9508 |
8 | Juvenile | 31 August 2023–12 September 2024 | 7228 |
9 | Juvenile | 8 September 2023–12 September 2024 | 8354 |
10 | Juvenile | 1 September 2023–12 September 2024 | 8446 |
11 | Juvenile | 9 September 2023–12 September 2024 | 9315 |
12 | Juvenile | 9 September 2023–12 September 2024 | 9332 |
13 | Adult | 8 September 2023–12 September 2024 | 9426 |
14 | Juvenile | 31 August 2023–12 September 2024 | 9551 |
15 | Juvenile | 3 September 2023–12 September 2024 | 9653 |
16 | Juvenile | 18 August 2021–7 August 2024 | 25,717 |
Breeding Sites-Subpopulation | Average Migration Distance (km) |
---|---|
Pumqu | 112.62 |
Longbaotan/Shaluli | 237.5 |
NT | 284.21 |
The Southeastern Qiangtang | 294.68 |
Manasarovar | 654.33 |
Zoige | 697.62 |
Pangong Tso | 923.45 |
East Kunlun Mountains/Altyn Mountains | 954.08 |
Qilian Mountains/Qinghai Lake | 1338.49 |
Yanchiwan | 1346.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Xu, L.; Liang, W.; Guo, J.; Yang, Y.; Lyu, C.; Zhou, S.; Zeng, Q.; Jia, Y.; Lei, G. Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations? Animals 2025, 15, 2304. https://doi.org/10.3390/ani15152304
Yang L, Xu L, Liang W, Guo J, Yang Y, Lyu C, Zhou S, Zeng Q, Jia Y, Lei G. Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations? Animals. 2025; 15(15):2304. https://doi.org/10.3390/ani15152304
Chicago/Turabian StyleYang, Le, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia, and Guangchun Lei. 2025. "Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?" Animals 15, no. 15: 2304. https://doi.org/10.3390/ani15152304
APA StyleYang, L., Xu, L., Liang, W., Guo, J., Yang, Y., Lyu, C., Zhou, S., Zeng, Q., Jia, Y., & Lei, G. (2025). Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations? Animals, 15(15), 2304. https://doi.org/10.3390/ani15152304