Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = clean energy carrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 2678 KB  
Review
Technological Trends in Ammonia-to-Hydrogen Production: Insights from a Global Patent Review
by Miza Syahmimi Haji Rhyme, Dk Nur Hayati Amali Pg Haji Omar Ali, Hazwani Suhaimi and Pg Emeroylariffion Abas
Hydrogen 2026, 7(1), 16; https://doi.org/10.3390/hydrogen7010016 - 23 Jan 2026
Viewed by 292
Abstract
With rising demand for clean energy and uncertainty surrounding large-scale renewable deployment, ammonia has emerged as a viable carrier for hydrogen storage and transportation. This study conducts a global patent-based analysis of ammonia-to-hydrogen production technologies to determine technological maturity, dominant design pathways, and [...] Read more.
With rising demand for clean energy and uncertainty surrounding large-scale renewable deployment, ammonia has emerged as a viable carrier for hydrogen storage and transportation. This study conducts a global patent-based analysis of ammonia-to-hydrogen production technologies to determine technological maturity, dominant design pathways, and emerging innovation trends. A statistically robust retrieval, screening, and classification process, based on the PRISMA guidelines, was employed to screen, sort, and analyze 708 relevant patent families systematically. Patent families were categorized according to synthesis processes, catalyst types, and technological fields. The findings indicate that electrochemical, plasma-based, photocatalytic, and hybrid systems are being increasingly investigated as alternatives to low-temperature processes. At the same time, thermal catalytic cracking remains the most established and widely used method. Significant advances in reactor engineering, system integration, and catalyst design have been observed, especially in Asia. While national hydrogen initiatives, such as those in Brunei, highlight the policy importance of ammonia-based hydrogen systems, the findings primarily provide a global overview of technological maturity and innovation trajectories, thereby facilitating long-term transitions to cleaner hydrogen pathways. Full article
Show Figures

Figure 1

36 pages, 4550 KB  
Article
Probabilistic Load Forecasting for Green Marine Shore Power Systems: Enabling Efficient Port Energy Utilization Through Monte Carlo Analysis
by Bingchu Zhao, Fenghui Han, Yu Luo, Shuhang Lu, Yulong Ji and Zhe Wang
J. Mar. Sci. Eng. 2026, 14(2), 213; https://doi.org/10.3390/jmse14020213 - 20 Jan 2026
Viewed by 121
Abstract
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly [...] Read more.
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly rely on shore power charging systems to refuel—essentially, plugging in instead of idling on diesel. But predicting how much power they will need is not straightforward. Think about it: different ships, varying battery sizes, mixed charging technologies, and unpredictable port stays all come into play, creating a load profile that is random, uneven, and often concentrated—a real headache for grid planners. So how do you forecast something so inherently variable? This study turned to the Monte Carlo method, a probabilistic technique that thrives on uncertainty. Instead of seeking a single fixed answer, the model embraces randomness, feeding in real-world data on supply modes, vessel types, battery capacity, and operational hours. Through repeated random sampling and load simulation, it builds up a realistic picture of potential charging demand. We ran the numbers for a simulated fleet of 400 vessels, and the results speak for themselves: load factors landed at 0.35 for conventional AC shore power, 0.39 for high-voltage DC, 0.33 for renewable-based systems, 0.64 for smart microgrids, and 0.76 when energy storage joined the mix. Notice how storage and microgrids really smooth things out? What does this mean in practice? Well, it turns out that Monte Carlo is not just academically elegant, it is practically useful. By quantifying uncertainty and delivering load factors within confidence intervals, the method offers port operators something precious: a data-backed foundation for decision-making. Whether it is sizing infrastructure, designing tariff incentives, or weighing the grid impact of different shore power setups, this approach adds clarity. In the bigger picture, that kind of insight matters. As ports worldwide strive to support cleaner shipping and align with climate goals—China’s “dual carbon” ambition being a case in point—achieving a reliable handle on charging demand is not just technical; it is strategic. Here, probabilistic modeling shifts from a simulation exercise to a tangible tool for greener, more resilient port energy management. Full article
Show Figures

Figure 1

20 pages, 2303 KB  
Article
Numerical Investigation of Sustainable Diesel Engine Performance and Emissions Using Directly Integrated Steam Methane Reforming Syngas
by Tolga Bayramoğlu, Kubilay Bayramoğlu, Semih Yılmaz and Kerim Deniz Kaya
Sustainability 2026, 18(2), 1012; https://doi.org/10.3390/su18021012 - 19 Jan 2026
Viewed by 147
Abstract
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation [...] Read more.
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation and storage. This study investigates a practical alternative in which hydrogen-rich syngas produced via steam methane reforming (SMR) is directly integrated into the diesel engine intake, thereby eliminating the need for fuel transport, storage, and separation while supporting a more sustainable fuel pathway. A validated computational fluid dynamics (CFD) model was developed to examine the effects of varying SMR gas mixture ratios (0–20%) on engine combustion, performance, and emissions. The findings reveal that increasing the SMR fraction enhances in-cylinder pressure by up to 15.7%, heat release rate by 100%, and engine power output by 102.5% compared to conventional diesel operation. Additionally, under SMR20 conditions, CO2 emissions are reduced by approximately 12%, demonstrating the potential contribution of this approach to decarbonization and climate mitigation efforts. However, the rise in in-cylinder temperatures was found to increase NOx formation, indicating the necessity for complementary emission control strategies. Overall, the results suggest that direct SMR syngas integration offers a promising pathway to improve the environmental and performance characteristics of conventional diesel engines while supporting cleaner energy transitions. Full article
Show Figures

Figure 1

36 pages, 4465 KB  
Review
Earth-Driven Hydrogen: Integrating Geothermal Energy with Methane Pyrolysis Reactors
by Ayann Tiam, Sarath Poda and Marshall Watson
Hydrogen 2026, 7(1), 10; https://doi.org/10.3390/hydrogen7010010 - 13 Jan 2026
Viewed by 271
Abstract
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many [...] Read more.
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many uses, such as transportation, industrial processes, and fuel cells. Methane pyrolysis has emerged as an attractive low-carbon alternative, decomposing methane (CH4) into hydrogen and solid carbon while circumventing direct CO2 emissions. Still, the process is very endothermic and has always depended on fossil-fuel heat sources, which limits its ability to run without releasing any carbon. This review examines the integration of geothermal energy and methane pyrolysis as a sustainable heat source, with a focus on Enhanced Geothermal Systems (EGS) and Closed-Loop Geothermal (CLG) technologies. Geothermal heat is a stable, carbon-free source of heat that can be used to preheat methane and start reactions. This makes energy use more efficient and lowers operating costs. Also, using flared natural gas from remote oil and gas fields can turn methane that would otherwise be thrown away into useful hydrogen and solid carbon. This review brings together the most recent progress in pyrolysis reactors, catalysts, carbon management, geothermal–thermochemical coupling, and techno-economic feasibility. The conversation centers on major problems and future research paths, with a focus on the potential of geothermal-assisted methane pyrolysis as a viable way to make hydrogen without adding to the carbon footprint. Full article
Show Figures

Figure 1

18 pages, 5762 KB  
Article
Intrinsically Safe Optical Fiber Hydrogen Sensor Using Pt-SiO2 Coated Long-Period Fiber Grating
by Xuhui Zhang, Liang Guo, Xinran Wei, Fangzhou Mao, Yuzhang Liang, Junsheng Wang and Wei Peng
Nanomaterials 2026, 16(2), 95; https://doi.org/10.3390/nano16020095 - 12 Jan 2026
Viewed by 183
Abstract
Hydrogen, a promising clean energy carrier, needs safe detection due to its flammability. Conventional electrical hydrogen sensors have drawbacks like high operating temperatures, poor selectivity and ignition risks. We propose an optical sensor using long-period fiber gratings (LPGs) coated with Pt-SiO2 nanomaterials. [...] Read more.
Hydrogen, a promising clean energy carrier, needs safe detection due to its flammability. Conventional electrical hydrogen sensors have drawbacks like high operating temperatures, poor selectivity and ignition risks. We propose an optical sensor using long-period fiber gratings (LPGs) coated with Pt-SiO2 nanomaterials. It works via catalytic reaction: H2 reacts with O2 on Pt nanoparticles, releasing heat that shifts LPG’s resonant wavelength. Structural characterization showed porous SiO2 with uniform Pt, ensuring efficiency and stability. Experiments proved it sensitively responds to 0.5–2.5% H2 (max wavelength shift 7.544 nm), with fast response/recovery, good repeatability/reversibility. Logistic fitting (R2 = 0.999) confirmed strong correlation. This sensor, safe, sensitive and stable, has great potential for real-time H2 monitoring in critical environments. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Graphical abstract

26 pages, 5509 KB  
Article
Reducing Ship Emissions Through Specialized Maintenance: A Case Study Based on Real Data
by Sonia Zaragoza, Julio Barreiro Montes, Julio Z. Seoane and Feliciano Fraguela Díaz
J. Mar. Sci. Eng. 2026, 14(2), 160; https://doi.org/10.3390/jmse14020160 - 12 Jan 2026
Viewed by 210
Abstract
Maintenance operations represent one of the most underutilized opportunities to reduce emissions and improve the energy efficiency of ships. This study proposes an innovative approach that analyzes such interventions from a holistic perspective of energy, environment, and economics using real operational data from [...] Read more.
Maintenance operations represent one of the most underutilized opportunities to reduce emissions and improve the energy efficiency of ships. This study proposes an innovative approach that analyzes such interventions from a holistic perspective of energy, environment, and economics using real operational data from two liquefied natural gas (LNG) carriers before and after their maintenance operations. The results show that comprehensive actions such as complete hull and propeller cleaning can reduce fuel consumption by more than 30% and CO2 emissions by more than 15%, in addition to improving propulsive efficiency by between 18% and 34%. In contrast, minor interventions, such as underwater propeller cleaning, have a limited effect with very specific improvements in fuel savings at certain speed ranges, but no significant effect on emissions or shaft power. In particular, the study demonstrates that a single comprehensive maintenance operation can change the Carbon Intensity Indicator (CII) rating from category E to D, reinforcing the strategic role of maintenance in the decarbonization and revaluation of maritime transport. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

19 pages, 3650 KB  
Article
Impacts of Hydrogen Blending on High-Rise Building Gas Distribution Systems: Case Studies in Weifang, China
by Yitong Xie, Xiaomei Huang, Haidong Xu, Guohong Zhang, Binji Wang, Yilin Zhao and Fengwen Pan
Buildings 2026, 16(2), 294; https://doi.org/10.3390/buildings16020294 - 10 Jan 2026
Viewed by 156
Abstract
Hydrogen is widely regarded as a promising clean energy carrier, and blending hydrogen into existing natural gas pipelines is considered a cost-effective and practical pathway for large-scale deployment. Supplying hydrogen-enriched natural gas to buildings requires careful consideration of the safe operation of pipelines [...] Read more.
Hydrogen is widely regarded as a promising clean energy carrier, and blending hydrogen into existing natural gas pipelines is considered a cost-effective and practical pathway for large-scale deployment. Supplying hydrogen-enriched natural gas to buildings requires careful consideration of the safe operation of pipelines and appliances without introducing new risks. In this study, on-site demonstrations and experimental tests were conducted in two high-rise buildings in Weifang to evaluate the impact of hydrogen addition on high-rise building natural gas distribution systems. The results indicate that hydrogen blending up to 20% by volume does not cause stratification in building risers and leads only to a relatively minor increase in additional pressure, approximately 0.56 Pa/m for every 10% increase in hydrogen addition. While hydrogen addition may increase leakage primarily in aging indoor gas systems, gas meter leakage rates under a 10% hydrogen blend remain below 3 mL/h, satisfying safety requirements. In addition, in-service domestic gas alarms remain effective under hydrogen ratios of 0–20%, with average response times of approximately 19–20 s. These findings help clarify the safety performance of hydrogen-blended natural gas in high-rise building distribution systems and provide practical adjustment measures to support future hydrogen injection projects. Full article
Show Figures

Figure 1

18 pages, 727 KB  
Article
Research on the Reliability of Lithium-Ion Battery Systems for Sustainable Development: Life Prediction and Reliability Evaluation Methods Under Multi-Stress Synergy
by Jiayin Tang, Jianglin Xu and Yamin Mao
Sustainability 2026, 18(1), 377; https://doi.org/10.3390/su18010377 - 30 Dec 2025
Viewed by 312
Abstract
Driven by the dual imperatives of global energy transition and sustainable development goals, lithium-ion batteries, as critical energy storage carriers, have seen the assessment of their lifecycle reliability and durability become a core issue underpinning the sustainable operation of clean energy systems. Grounded [...] Read more.
Driven by the dual imperatives of global energy transition and sustainable development goals, lithium-ion batteries, as critical energy storage carriers, have seen the assessment of their lifecycle reliability and durability become a core issue underpinning the sustainable operation of clean energy systems. Grounded in a multidimensional perspective of sustainable development, this study aims to establish a quantifiable and monitorable battery reliability evaluation framework to address the challenges to lifespan and performance sustainability faced by batteries under complex multi-stress coupled operating conditions. Lithium-ion batteries are widely used across various fields, making an accurate assessment of their reliability crucial. In this study, to evaluate the lifespan and reliability of lithium-ion batteries when operating in various coupling stress environments, a multi-stress collaborative accelerated model(MCAM) considering interaction is established. The model takes into account the principal stress effects and the interaction effects. The former is developed based on traditional acceleration models (such as the Arrhenius model), while the latter is constructed through the combination of exponential, power, and logarithmic functions. This study firstly considers the scale parameter of the Weibull distribution as an acceleration effect, and the relationship between characteristic life and stresses is explored through the synergistic action of primary and interaction effects. Subsequently, a multi-stress maximum likelihood estimation method that considers interaction effects is formulated, and the model parameters are estimated using the gradient descent algorithm. Finally, the validity of the proposed model is demonstrated through simulation, and numerical examples on lithium-ion batteries demonstrate that accurate lifetime prediction is enabled by the MCAM, with test duration, cost, and resource consumption significantly reduced. This study not only provides a scientific quantitative tool for advancing the sustainability assessment of battery systems, but also offers methodological support for relevant policy formulation, industry standard optimization, and full lifecycle management, thereby contributing to the synergistic development of energy storage technology across the economic, environmental, and social dimensions of sustainability. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

21 pages, 1332 KB  
Article
Simulation of Perovskite Solar Cell with BaZr(S0.6Se0.4)3–Based Absorber Using SCAPS–1D
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Processes 2026, 14(1), 87; https://doi.org/10.3390/pr14010087 - 26 Dec 2025
Viewed by 594
Abstract
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. [...] Read more.
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. Photovoltaic technology has emerged as a promising solution by harnessing renewable energy from the sun, providing a clean and inexhaustible power source. Perovskite solar cells (PSCs) are a class of hybrid organic–inorganic solar cells that have recently attracted significant scientific attention due to their low cost, relatively high efficiency, low–temperature processing routes, and longer carrier lifetimes. These characteristics make them a viable alternative to traditional fossil fuels, reducing the carbon footprint and contributing to the fight against global warming. In this study, the SCAPS–1D numerical simulator was used in the computational analysis of a PSC device with the configuration FTO/ETL/BaZr(S0.6Se0.4)3/HTL/Ir. Different hole transport layer (HTL) and electron transport layer (ETL) material were proposed and tested. The HTL materials included copper (I) oxide (Cu2O), 2,2′,7,7′–Tetrakis(N,N–di–p–methoxyphenylamine)9,9′–spirobifluorene (spiro–OMETAD), and poly(3–hexylthiophene) (P3HT), while the ETLs included cadmium suphide (CdS), zinc oxide (ZnO), and [6,6]–phenyl–C61–butyric acid methyl ester (PCBM). Finally, BaZr(S0.6Se0.4)3 was proposed as an absorber, and a fluorine–doped tin oxide glass substrate (FTO) was proposed as an anode. The metal back contact used was iridium. Photovoltaic parameters such as short circuit density (Isc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) were used to evaluate the performance of the device. The initial simulated primary device with the configuration FTO/CdS/BaZr(S0.6Se0.4)3/spiro–OMETAD/Ir gave a PCE of 5.75%. Upon testing different HTL materials, the best HTL was found to be Cu2O, and the PCE improved to 9.91%. Thereafter, different ETLs were also inserted and tested, and the best ETL was established to be ZnO, with a PCE of 10.10%. Ultimately an optimized device with a configuration of FTO/ZnO/BaZr(S0.6Se0.4)3/Cu2O/Ir was achieved. The other photovoltaic parameters for the optimized device were as follows: FF = 31.93%, Jsc = 14.51 mA cm−2, and Voc = 2.18 V. The results of this study will promote the use of environmentally benign BaZr(S0.6Se0.4)3–based absorber materials in PSCs for improved performance and commercialization. Full article
Show Figures

Figure 1

33 pages, 1583 KB  
Review
Catalytic Conversion Pathways of Green Hydrogen Production: Technological Evolution and Cutting-Edge Prospects of Catalytic Hydrogen Production from Biomass
by Qing Xu, Yingchen Su, Yaoxun Feng and Shengxian Xian
Catalysts 2026, 16(1), 2; https://doi.org/10.3390/catal16010002 - 20 Dec 2025
Cited by 1 | Viewed by 569
Abstract
Hydrogen (H2) is a key clean energy carrier for achieving carbon neutrality, featuring both cleanliness and high efficiency. Biomass-to-hydrogen technologies, with the advantages of strong renewability and low emissions, provide a highly promising alternative to fossil fuel-based hydrogen production. This review [...] Read more.
Hydrogen (H2) is a key clean energy carrier for achieving carbon neutrality, featuring both cleanliness and high efficiency. Biomass-to-hydrogen technologies, with the advantages of strong renewability and low emissions, provide a highly promising alternative to fossil fuel-based hydrogen production. This review summarizes the main pathways and latest research progress in catalytic hydrogen production from biomass, focusing on the role of catalysts and optimization directions in the two major processes of thermochemical and biochemical methods. Despite the rapid development in this field, the large-scale application of biomass-to-hydrogen technologies is still limited by issues such as catalyst deactivation, feedstock composition fluctuations, and low energy efficiency. Traditional biomass-to-hydrogen technologies cannot achieve breakthrough progress in large-scale production in the short term; however, through coupled emerging technologies like biomass electrooxidation for hydrogen production and on-site hydrogen production via aqueous ethanol reforming, biomass-based hydrogen production is expected to solve problems such as low energy efficiency and high transportation difficulties, thereby making an important contribution to the construction of a green and low-carbon hydrogen economy system. Future research should focus on the rational design of stable nanocatalysts, artificial intelligence-driven research and development as well as advanced characterization technologies and the application of integrated systems and process innovation, along with diverse feedstocks and high-value-added product systems. Full article
Show Figures

Graphical abstract

16 pages, 1799 KB  
Article
Glucose-Mediated Synthesis of Spherical Carbon Decorated with Gold Nanoparticles as Catalyst in a Hydrogen Generation Reaction
by Erik Biehler and Tarek M. Abdel-Fattah
Catalysts 2025, 15(12), 1141; https://doi.org/10.3390/catal15121141 - 4 Dec 2025
Viewed by 566
Abstract
The growing environmental and economic impacts of carbon-based fuels have accelerated the search for sustainable alternatives, with hydrogen (H2) emerging as a clean and efficient energy carrier. Sodium borohydride (NaBH4) is a promising hydrogen storage compound, due to its [...] Read more.
The growing environmental and economic impacts of carbon-based fuels have accelerated the search for sustainable alternatives, with hydrogen (H2) emerging as a clean and efficient energy carrier. Sodium borohydride (NaBH4) is a promising hydrogen storage compound, due to its high hydrogen content (10.6 wt%) and stability under ambient conditions. However, its hydrolysis with water proceeds slowly without an effective catalyst. In this study, gold nanoparticle-decorated spherical carbon (AuSC) composites were synthesized and evaluated as catalysts for NaBH4 hydrolysis. The spherical carbon support, prepared via a glucose-mediated route, provided a high-surface-area and conductive matrix that dispersed and stabilized Au nanoparticles, preventing agglomeration. Catalyst morphology and composition were characterized using XRD, TEM, SEM, and EDS analyses. The AuSC catalyst exhibited excellent catalytic activity, producing 21.8 mL of H2 at pH 7, 303 K, and 835 μmol NaBH4. The activation energy (Ea) was determined to be 51.6 kJ mol−1, consistent with a heterolytic B–H bond cleavage mechanism at the Au–C interface. The TON (2.82 × 104) and TOF (1.41 × 104 h−1) values confirmed high intrinsic catalytic efficiency. These results demonstrate that Au-decorated spherical carbon composites are efficient, stable, and promising catalysts for hydrogen generation from NaBH4 hydrolysis under mild conditions. Full article
Show Figures

Graphical abstract

21 pages, 497 KB  
Review
Digital Twins for Cryogenic Hydrogen Safety: Integrating Computational Fluid Dynamics and Machine Learning
by Konstantina Vogiatzaki, Giovanni Tretola and Laurie Cesmat
Hydrogen 2025, 6(4), 110; https://doi.org/10.3390/hydrogen6040110 - 1 Dec 2025
Viewed by 766
Abstract
The global transition toward low-carbon energy and transportation systems positions hydrogen as a key clean and versatile energy carrier. However, ensuring the safe handling and storage of hydrogen—particularly in its liquid form LH2)—remains a critical challenge to large-scale deployment. Accidental releases [...] Read more.
The global transition toward low-carbon energy and transportation systems positions hydrogen as a key clean and versatile energy carrier. However, ensuring the safe handling and storage of hydrogen—particularly in its liquid form LH2)—remains a critical challenge to large-scale deployment. Accidental releases of LH2 can lead to rapid dispersion, cryogenic hazards, and increased risks of ignition or detonation due to hydrogen’s low ignition energy and wide flammability limits. This review synthesizes recent advances in the understanding and modelling of LH2 safety scenarios, emphasizing the complementary roles of Computational Fluid Dynamics (CFD) and Machine Learning (ML). The paper first outlines the fundamental physical processes governing cryogenic hydrogen leaks, spills, and jet releases, followed by an overview of current storage and sensing technologies. Special consideration is given to safety implications arising from the differences between open and enclosed environments and the fact that existent sensing technologies present deficiencies at low temperatures. CFD-based studies are reviewed to illustrate how these methods capture complex flow and dispersion dynamics under diverse operational and environmental conditions, supported by a summary of existing experimental investigations used for model validation. The emerging role of ML is then examined, focusing on its integration with CFD simulations and sensor networks for predictive risk assessment, real-time leak detection, and the development of digital twins. Finally, integrated CFD–ML-sensor systems are discussed as a pathway toward a physics-informed, data-driven framework for advancing hydrogen safety and reliability. Full article
Show Figures

Figure 1

30 pages, 998 KB  
Review
Advances in Electrolyzer Emulators: A Comprehensive Review
by Hoda El Assal, Mamadou-Baïlo Camara and Damien Guilbert
Electronics 2025, 14(23), 4576; https://doi.org/10.3390/electronics14234576 - 22 Nov 2025
Viewed by 1103
Abstract
Electrolyzers (ELs) have become pivotal technologies for the production of green hydrogen, a clean energy carrier that facilitates renewable energy sources and supports the energy transition from fossil-based to a zero-carbon energy system. However, challenges such as high costs, maintenance requirements, and hydrogen [...] Read more.
Electrolyzers (ELs) have become pivotal technologies for the production of green hydrogen, a clean energy carrier that facilitates renewable energy sources and supports the energy transition from fossil-based to a zero-carbon energy system. However, challenges such as high costs, maintenance requirements, and hydrogen storage issues still hinder large-scale deployment. To address these obstacles, EL emulators have emerged as low-cost and safe alternatives for system development and testing. These emulators have gained worldwide interest, supporting the design and validation of EL-based systems, without the risk of damaging real units. However, despite their increasing relevance in research and development, dedicated studies on EL emulators remain relatively scarce. This article provides a detailed overview of the main characteristics and various studies on emulators. The review starts by examining the existing literature on EL emulators and identifying gaps in current research. Special attention is paid to the electrical models adopted to reproduce their characteristics, as well as to the control strategies implemented to ensure accurate operation. This analysis highlights the importance of emulator-based studies in accelerating the development, optimization, and integration of diverse EL technologies into future energy systems. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

29 pages, 5590 KB  
Article
Ammonia—A Fuel of the Future? Economies of Production and Control of NOx Emissions via Oscillating NH3 Combustion for Process Heat Generation
by Krasimir Aleksandrov, Hans-Joachim Gehrmann, Janine Wiebe and Dieter Stapf
Energies 2025, 18(22), 5948; https://doi.org/10.3390/en18225948 - 12 Nov 2025
Viewed by 1186
Abstract
This study investigates the viability of using Ammonia as a carbon-free fuel for heat generation in terms of both reactive Nitrogen and Carbon emissions and production cost. As a carbon-free, environmentally friendly energy carrier, Ammonia has the potential to play a significant role [...] Read more.
This study investigates the viability of using Ammonia as a carbon-free fuel for heat generation in terms of both reactive Nitrogen and Carbon emissions and production cost. As a carbon-free, environmentally friendly energy carrier, Ammonia has the potential to play a significant role in the sustainable, clean energy supply of the future. However, a major drawback of the steady combustion of ammonia for process heat generation is the extremely high levels of NOx emissions it produces. In this pilot-scale study, the experimental results show that, through the oscillating combustion of NH3, NOx emissions can be reduced by as much as 80%. Production costs were compared to evaluate the economic feasibility of Ammonia-based heat; the results reveal the economic challenges associated with using Ammonia compared to natural gas, even when accounting for the development of CO2 pricing. Only in terms of Carbon Capture and Storage requirements is Ammonia-based heat economically advantageous. This study also scrutinizes the economies of the production of gray and green Ammonia. Considering CO2 certificate costs, the cost of green ammonia would be competitive in the near future. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology: 2nd Edition)
Show Figures

Figure 1

17 pages, 2159 KB  
Review
Biohydrogen Production from Agricultural and Livestock By-Products by Dark Fermentation: A Data Mining Approach
by Federico Illuminati, Rossana Savio, Andrea Pezzuolo, Giovanni Ferrari, Francesco Marinello, Mariangela Guidolin and Maria Cristina Lavagnolo
Agriculture 2025, 15(22), 2323; https://doi.org/10.3390/agriculture15222323 - 7 Nov 2025
Viewed by 612
Abstract
Hydrogen is being increasingly recognized as a promising clean, renewable energy carrier. Among the available production pathways, biological processes, particularly dark fermentation of residual biomasses and agricultural by-products, represent an appealing approach aligned with circular economy principles. These feedstocks are abundant and low [...] Read more.
Hydrogen is being increasingly recognized as a promising clean, renewable energy carrier. Among the available production pathways, biological processes, particularly dark fermentation of residual biomasses and agricultural by-products, represent an appealing approach aligned with circular economy principles. These feedstocks are abundant and low cost; however, their relatively low energy density constrains process efficiency. To mitigate this limitation, research efforts have concentrated on optimizing substrate composition and implementing pre-treatment strategies to enhance hydrogen yields. Numerous studies have explored the potential of agricultural and livestock residue, yet reported outcomes are often heterogeneous in terms of units, systems, and experimental conditions, complicating direct comparison. This review consolidates current knowledge and identifies effective strategies to optimize biohydrogen generation. Among the investigated substrates, corn stover emerges as the most promising, with hydrogen yields up to 200 [mL H2/gVS (Volatile Solids)]. Evidence further suggests that inoculum processing, including enrichment or pre-treatment, can substantially improve performance, often more effectively than substrate processing alone. When both inoculum and substrate are treated, hydrogen yields may increase up to fourfold relative to untreated systems. Overall, integrating suitable feedstocks with targeted processing strategies is crucial to advancing sustainable biohydrogen production. Full article
(This article belongs to the Special Issue Livestock Waste Sustainable Management and Applications)
Show Figures

Figure 1

Back to TopTop