Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = chlorophyll stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 12598 KiB  
Article
OKG-ConvGRU: A Domain Knowledge-Guided Remote Sensing Prediction Framework for Ocean Elements
by Renhao Xiao, Yixiang Chen, Lizhi Miao, Jie Jiang, Donglin Zhang and Zhou Su
Remote Sens. 2025, 17(15), 2679; https://doi.org/10.3390/rs17152679 (registering DOI) - 2 Aug 2025
Abstract
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or [...] Read more.
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or data-driven approaches. Physical models are constrained by modeling complexity and parameterization errors, while data-driven models lack interpretability and depend on high-quality data. To address these challenges, this study proposes OKG-ConvGRU, a domain knowledge-guided remote sensing prediction framework for ocean elements. This framework integrates knowledge graphs with the ConvGRU network, leveraging prior knowledge from marine science to enhance the prediction performance of ocean elements in remotely sensed images. Firstly, we construct a spatio-temporal knowledge graph for ocean elements (OKG), followed by semantic embedding representation for its spatial and temporal dimensions. Subsequently, a cross-attention-based feature fusion module (CAFM) is designed to efficiently integrate spatio-temporal multimodal features. Finally, these fused features are incorporated into an enhanced ConvGRU network. For multi-step prediction, we adopt a Seq2Seq architecture combined with a multi-step rolling strategy. Prediction experiments for chlorophyll-a concentration in the eastern seas of China validate the effectiveness of the proposed framework. The results show that, compared to baseline models, OKG-ConvGRU exhibits significant advantages in prediction accuracy, long-term stability, data utilization efficiency, and robustness. This study provides a scientific foundation and technical support for the precise monitoring and sustainable development of marine ecological environments. Full article
Show Figures

Figure 1

27 pages, 7785 KiB  
Article
Estimation of Potato Growth Parameters Under Limited Field Data Availability by Integrating Few-Shot Learning and Multi-Task Learning
by Sen Yang, Quan Feng, Faxu Guo and Wenwei Zhou
Agriculture 2025, 15(15), 1638; https://doi.org/10.3390/agriculture15151638 - 29 Jul 2025
Viewed by 197
Abstract
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises [...] Read more.
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises model accuracy and generalizability, impeding large-scale regional applications. This study proposes a novel deep learning model that integrates multi-task learning and few-shot learning to address the challenge of low data in growth parameter prediction. Two multi-task learning architectures, MTL-DCNN and MTL-MMOE, were designed based on deep convolutional neural networks (DCNNs) and multi-gate mixture-of-experts (MMOE) for the simultaneous estimation of LCC, LAI, and AGB from Sentinel-2 imagery. Building on this, a few-shot learning framework for growth prediction (FSLGP) was developed by integrating simulated spectral generation, model-agnostic meta-learning (MAML), and meta-transfer learning strategies, enabling accurate prediction of multiple growth parameters under limited data availability. The results demonstrated that the incorporation of calibrated simulated spectral data significantly improved the estimation accuracy of LCC, LAI, and AGB (R2 = 0.62~0.73). Under scenarios with limited field measurement data, the multi-task deep learning model based on few-shot learning outperformed traditional mixed inversion methods in predicting potato growth parameters (R2 = 0.69~0.73; rRMSE = 16.68%~28.13%). Among the two architectures, the MTL-MMOE model exhibited superior stability and robustness in multi-task learning. Independent spatiotemporal validation further confirmed the potential of MTL-MMOE in estimating LAI and AGB across different years and locations (R2 = 0.37~0.52). These results collectively demonstrated that the proposed FSLGP framework could achieve reliable estimation of crop growth parameters using only a very limited number of in-field samples (approximately 80 samples). This study can provide a valuable technical reference for monitoring and predicting growth parameters in other crops. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 3023 KiB  
Article
Multi-Parameter Analysis of Photosynthetic and Molecular Responses in Chlorella vulgaris Exposed to Silver Nanoparticles and Ions
by Bruno Komazec, Sandra Vitko, Biljana Balen, Mario Cindrić, Renata Biba and Petra Peharec Štefanić
Toxics 2025, 13(8), 627; https://doi.org/10.3390/toxics13080627 - 26 Jul 2025
Viewed by 381
Abstract
Due to widespread use of silver nanoparticles (AgNPs), the assessment of their potential harm to microalgal photosynthesis is crucial, as microalgae, together with cyanobacteria, contribute to approximately 50% of global oxygen production. This study investigated photosynthetic pigments, photosynthetic rate, chlorophyll a fluorescence, and [...] Read more.
Due to widespread use of silver nanoparticles (AgNPs), the assessment of their potential harm to microalgal photosynthesis is crucial, as microalgae, together with cyanobacteria, contribute to approximately 50% of global oxygen production. This study investigated photosynthetic pigments, photosynthetic rate, chlorophyll a fluorescence, and the expression of photosynthesis-related genes and proteins in green alga Chlorella vulgaris after 72 h exposure to citrate- and cetyltrimethylammonium bromide (CTAB)-stabilized AgNPs, as well as silver ions (AgNO3), at concentrations allowing 75% cell survival (EC25). All treatments impaired photosynthetic performance. The most pronounced decreases in chlorophyll fluorescence parameters and photosynthetic rate, alongside elevated energy dissipation, were observed after exposure to AgNP-CTAB and AgNO3. AgNP-citrate had milder effects and induced compensatory responses, reflected in an increased performance index and upregulation of photosynthesis-related proteins. AgNP-CTAB induced the strongest downregulation of gene and protein expression, likely due to its higher EC25 concentration and cationic surface promoting interaction with photosynthetic structures. Although AgNO3 caused fewer molecular changes, it significantly disrupted photosynthetic function, suggesting a direct effect of Ag+ ions on photosynthesis-related proteins. Overall, the results highlight the role of AgNPs’ surface coatings and dosage in determining their phytotoxicity, with photosystem disruption and oxidative stress emerging as key mechanisms of action. Full article
(This article belongs to the Special Issue Toxic Pollutants and Ecological Risk in Aquatic Environments)
Show Figures

Graphical abstract

22 pages, 3974 KiB  
Article
Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
by Jinhong Niu, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang and Jinhua Li
Agronomy 2025, 15(7), 1754; https://doi.org/10.3390/agronomy15071754 - 21 Jul 2025
Viewed by 253
Abstract
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a [...] Read more.
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a total of 87 poplar varieties were evaluated in a controlled greenhouse pot experiment. Under both low-nitrogen (LN) and normal-nitrogen (NN) conditions, 18 traits spanning four categories—growth performance, leaf morphology, chlorophyll fluorescence, and N isotope parameters were measured. For 13 of these traits (growth, leaf morphology, chlorophyll fluorescence), genetic variation and parameters, including genotypic values, were analyzed using best linear unbiased prediction (BLUP) within a linear mixed model (LMM). LN tolerance of tested poplar varieties was comprehensively assessed with three MGIDI strategies by integrating means, BLUPs, and low-nitrogen tolerance coefficient (LNindex) to rank poplar varieties. The results exhibited highly significant differences across all traits between LN and NN experiments, as well as among varieties. LN stress markedly inhibited growth, altered leaf morphology, and reduced chlorophyll fluorescence parameters in young poplar plants. Among the selection strategies, the MGIDI_LNindex approach demonstrated the highest selection differential percent (SD% = 10.5–35.23%). Using a selection intensity (SI) of 20%, we systematically identified 17 superior genotypes across all three strategies. In a thorough, comprehensive MGIDI-based evaluation, these varieties exhibited exceptional adaptability and stability under LN stress. The selected genotypes represent valuable genetic resources for developing improved poplar cultivars with enhanced low-nitrogen tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 13745 KiB  
Article
Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize
by Mo Zhu, Ziyu Wang, Shijie Li and Siping Han
Plants 2025, 14(14), 2242; https://doi.org/10.3390/plants14142242 - 21 Jul 2025
Viewed by 313
Abstract
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 [...] Read more.
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 gene family exhibits distinct chromosomal localization (Chr7 and Chr9) and functional domain diversification (e.g., group 10-specific motifs 11/12), indicating species-specific adaptive evolution. Integrative analysis of promoter cis-elements and multi-omics data confirmed the root-preferential expression of ZmAAP1 under drought stress, mediated via the ABA-DRE signaling pathway. To validate its biological role, we generated transgenic maize lines expressing Arabidopsis thaliana AtAAP1 via Agrobacterium-mediated transformation. Three generations of genetic stability screening confirmed the stable genomic integration and root-specific accumulation of the AtAAP1 protein (Southern blot/Western blot). Field trials demonstrated that low-N conditions enhanced the following transgenic traits: the chlorophyll content increased by 13.5%, and the aboveground biomass improved by 7.2%. Under high-N regimes, the gene-pyramided hybrid ZD958 (AAP1 + AAP1) achieved a 12.3% yield advantage over conventional varieties. Our findings reveal ZmAAP1’s dual role in root development and long-distance nitrogen transport, establishing it as a pivotal target for molecular breeding. This study provides actionable genetic resources for enhancing NUE in maize production systems. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 245
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

28 pages, 6252 KiB  
Article
An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
by Francisco Rafael Santos da Conceição, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel and Luciana Cristina Vitorino
Agronomy 2025, 15(7), 1668; https://doi.org/10.3390/agronomy15071668 - 10 Jul 2025
Viewed by 264
Abstract
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. [...] Read more.
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. This study employed an integrative approach combining in vitro and plant-based assays to assess the effects of starch, carboxymethyl cellulose (CMC), and trehalose in formulations containing Azospirillum brasilense, Bradyrhizobium diazoefficiens, Methylobacterium symbioticum, and Paenibacillus alvei, applied to Glycine max seeds. Our hypothesis was that the presence of these additives, each with distinct functional roles (starch as a slow-release carbon source, CMC as a structural agent and protector against physical stress, and trehalose as an osmoprotectant and membrane stabilizer), would influence not only bacterial viability but also the seed germination, growth, and physiological responses of inoculated G. max plants. Starch improved viability in A. brasilense formulations, while both starch and trehalose had positive effects on M. symbioticum. These additives also enhanced plant traits, including dry biomass, chlorophyll content, carboxylation efficiency (A/Ci), and photochemical efficiency (Fv/Fm and Pi_Abs). Trehalose was particularly effective in formulations with B. diazoefficiens and M. symbioticum, supporting its use as a versatile stabilizer. In contrast, CMC (0.25%) negatively impacted bacterial viability, especially for B. diazoefficiens and P. alvei, and impaired physiological parameters in G. max when combined with M. symbioticum. These results highlight the need to evaluate formulation components not only for their physical roles but also for their specific interactions with microbial strains and effects on host plants. Such an integrative approach is essential for designing stable, efficient bioinoculants that align with sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 726 KiB  
Article
Incorporation of Agglomerated Spirulina platensis Powder in Yogurt: A Strategy for Enhancing Nutritional Quality and Bioactive Compounds
by Rosana Correia Vieira Albuquerque, Carlos Eduardo de Farias Silva, Margarete Cabral dos Santos Silva, Wanderson dos Santos Carneiro, Kaciane Andreola, Brígida Maria Villar da Gama, Marcos Vinicius Azevedo Figueiredo, Albanise Enide da Silva and João Victor Oliveira Nascimento da Silva
Fermentation 2025, 11(7), 389; https://doi.org/10.3390/fermentation11070389 - 8 Jul 2025
Viewed by 485
Abstract
The incorporation of Spirulina platensis has been studied as a strategy to enrich food with bioactive compounds. Recent studies have expanded the use of Spirulina in yogurts, seeking to combine its nutritional value with the practicality of functional foods. This study evaluated the [...] Read more.
The incorporation of Spirulina platensis has been studied as a strategy to enrich food with bioactive compounds. Recent studies have expanded the use of Spirulina in yogurts, seeking to combine its nutritional value with the practicality of functional foods. This study evaluated the physicochemical and bioactive compounds characteristics of yogurt incorporating commercial and agglomerated (with 30% maltodextrin, efficient carrier agent, in a fluidized bed) Spirulina platensis powder, at concentrations of 0.5–2.0% (w/v) prior to fermentation. This study is novel as it is the first to report the incorporation of S. platensis agglomerated in a fluidized bed into yogurt. Fermentations were carried out at 42 °C for 5 h and then the stirred yogurts were stored at 4 °C for 28 days for stabilization. All yogurts obtained achieved characteristic values according to the Brazilian Normative Instruction 46/2007 with total acidity (0.6–1.5%), pH (3.5–4.6), and viable lactic bacteria of at least 106 CFU.g−1, without significantly affecting the quality of the final product or the activity of lactic acid bacteria. For the nutritional composition, it was observed that the greater the amount of cyanobacteria incorporated, the higher the concentrations of proteins (4.2–5.6%) and ashes (1.3–1.8%) in the product, and for the bioactive compounds, the phenolic compounds ranged between 2.98 and 14.96 mg.100 g−1 and significantly enriched the yogurt with phycocyanin (2.19–3.65 mg.100 g−1), β-carotene (4.73–6.37 mg.100 g−1), and chlorophyll a (12.39–13.77 mg.100 g−1), for the formulations using commercial and agglomerated S. platensis powder. Agglomeration improved the stability of bioactive compounds after fermentation and stabilization processes of the yogurts. Also, it was found that the agglomerated S. platensis powder preserved a higher amount of bioactive compounds in the yogurt, which fulfills one of the main objectives of incorporating this cyanobacterium. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae)
Show Figures

Figure 1

21 pages, 3149 KiB  
Article
Carrier-Based Application of Phyto-Benefic and Salt-Tolerant Bacillus wiedmannii and Bacillus paramobilis for Sustainable Wheat Production Under Salinity Stress
by Raina Rashid, Atia Iqbal, Muhammad Shahzad, Sidra Noureen and Hafiz Abdul Muqeet
Plants 2025, 14(14), 2096; https://doi.org/10.3390/plants14142096 - 8 Jul 2025
Viewed by 376
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. Despite extensive research on PGPR isolation, their practical application in agricultural fields has faced challenges due to environmental stresses and limited survival during storage. To address these limitations, the present study aimed to isolate salt-tolerant bacterial strains and formulate them with organic carriers to enhance their stability and effectiveness under saline conditions. The isolated bacterial strains exhibited high salt tolerance, surviving NaCl concentrations of up to 850 millimolar. These strains demonstrated basic key plant growth-promoting traits, including phosphate solubilization, auxin production, and nitrogen fixation. The application of carrier-based formulations with both strains, Bacillus wiedmannii (RR2) and Bacillus paramobilis (RR3), improved physiological and biochemical parameters in wheat plants subjected to salinity stress. The treated plants, when subjected to salinity stress, showed notable increases in chlorophyll a (73.3% by Peat + RR3), chlorophyll b (41.1% by Compost + RR3), carotenoids (51.1% by Peat + RR3), relative water content (77.7% by Compost + RR2), proline (75.8% by compost + RR3), and total sugar content (12.4% by peat + RR2), as compared to the stressed control. Plant yield parameters such as stem length (35.1% by Peat + RR3), spike length (22.5% by Peat + RR2), number of spikes (67.6% by Peat + RR3), and grain weight (39.8% by Peat + RR3) were also enhanced and compared to the stressed control. These results demonstrate the potential of the selected salt-tolerant PGPR strains (ST-strains) to mitigate salinity stress and improve wheat yield under natural field conditions. The study highlights the significance of carrier-based PGPR applications as an effective and sustainable approach for enhancing crop productivity in saline-affected soils. Full article
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 449
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
Different Heat Tolerance of Two Creeping Bentgrass Cultivars Related to Altered Accumulation of Organic Metabolites
by Yong Du, Yue Zhao and Zhou Li
Agronomy 2025, 15(7), 1544; https://doi.org/10.3390/agronomy15071544 - 25 Jun 2025
Viewed by 317
Abstract
High-temperature stress is one of the main limiting factors for the cultivation and management of cool-season creeping bentgrass (Agrostis stolonifera). The objectives of the current study were to compare physiological changes in heat-tolerant PROVIDENCE and heat-sensitive PENNEAGLE and further identify differential [...] Read more.
High-temperature stress is one of the main limiting factors for the cultivation and management of cool-season creeping bentgrass (Agrostis stolonifera). The objectives of the current study were to compare physiological changes in heat-tolerant PROVIDENCE and heat-sensitive PENNEAGLE and further identify differential organic metabolites associated with thermotolerance in leaves. Two cultivars were cultivated under optimal conditions (23/19 °C) and high-temperature stress (38/33 °C) for 15 days. Heat stress significantly reduced leaf relative water content, chlorophyll content, and photochemical efficiency, and also resulted in severe oxidative damage to PROVIDENCE and PENNEAGLE. Heat-tolerant PROVIDENCE exhibited 10% less water deficit, 11% lower chlorophyll loss, and significantly lower oxidative damage as well as better cell membrane stability compared with PENNEAGLE under heat stress. Metabolomic analysis further found that PROVIDENCE accumulated more sugars (fructose, tagatose, lyxose, ribose, and 6-deoxy-D-glucose), amino acids (norleucine, allothreonine, and glycine), and other metabolites (lactic acid, ribitol, arabitol, and arbutin) than PENNEAGLE. These metabolites play positive roles in energy supply, osmotic adjustment, antioxidant, and membrane stability. Heat stress significantly decreased the accumulation of tricarboxylic acid cycle-related organic acids in two cultivars, resulting in a metabolic deficit for energy production. However, both PROVIDENCE and PENNEAGLE significantly up-regulated the accumulation of stigmasterol related to the stability of cell membrane systems under heat stress. The current findings provide a better understanding of differential thermotolerance in cool-season turfgrass species. In addition, the data can also be utilized in breeding programs to improve the heat tolerance of other grass species. However, the current study only focused on physiological and metabolic responses to heat stress between two genotypes. It would be better to utilize molecular techniques in future studies to better understand and validate differential heat tolerance in creeping bentgrass species. Full article
Show Figures

Figure 1

31 pages, 3023 KiB  
Article
Pipecolic Acid, a Drought Stress Modulator, Boosts Chlorophyll Assimilation, Photosynthetic Performance, Redox Homeostasis, and Osmotic Adjustment of Drought-Affected Hordeum vulgare L. Seedlings
by Nagihan Aktas, Saad Farouk, Amal Ahmed Mohammed Al-Ghamdi, Ahmed S. Alenazi, Mona Abdulaziz Labeed AlMalki and Burcu Seckin Dinler
Plants 2025, 14(13), 1949; https://doi.org/10.3390/plants14131949 - 25 Jun 2025
Viewed by 494
Abstract
While pipecolic acid (Pip) mediates morpho-physiological and molecular responses during biotic stress, its roles under drought remain an inexpressible mystery. The investigation aimed to elucidate the roles of a 30μM Pip pretreatment in alleviating drought injury on barley (Hordeum vulgare L. cv, [...] Read more.
While pipecolic acid (Pip) mediates morpho-physiological and molecular responses during biotic stress, its roles under drought remain an inexpressible mystery. The investigation aimed to elucidate the roles of a 30μM Pip pretreatment in alleviating drought injury on barley (Hordeum vulgare L. cv, Bülbül89) seedlings. Pip pretreatment under normal or drought conditions lowered the osmotic potential (Ψs) and water saturation deficit (WSD), while optimizing the relative water content (RWC), triggered osmotically energetic molecules (OEM) and salicylic acid (SA) accumulation, improving osmotic adjustment (OA), and boosting water retention and uptake capacity (WTC, and WUC), alongwith a considerable improvement in seedling growth over non-treated plants under such conditions. Additionally, Pip pretreatment improved chlorophyll (Chl), the chlorophyll stability index (CSI), pheophytina, chlorophyllidea (chlidea), chlorophyllideb (chlideb), chla/chlidea, chlb/chlideb, protoporphyrin, Mg-protoporphyrin, protochlorophyllide, and photosynthetic performance over non-treated plants under such conditions. Pip pretreatment preserves redox homeostasis in drought-stressed plants by accumulating antioxidant solutes alongside the activation of superoxide dismutase and glutathione reductase over non-treated plants. Drought distinctly reduced Ψs (more negative), RWC, photosynthetic pigment, CSI, chlorophyll assimilation intermediate, and photosynthetic performance, with an increment in chlorophyll degradation intermediate and nonenzymatic antioxidant solutes. Drought maintains OA capacity via a hyper-accumulation of OEM and SA, which results in higher WSD, WTC, and WUC. Drought triggered an oxidative burst, which was associated with a decline in the membrane stability index. These findings highlight Pip’s capability for lessening drought stress-induced restriction in barley seedlings via bolstering oxidative homeostasis, OA capacity, and stabilizing chlorophyll biosynthesis. Future research must elucidate the precise molecular mechanisms underlying Pip’s action in alleviating drought injury. Full article
(This article belongs to the Special Issue Enhancing Plant Drought Tolerance: Challenges and Innovations)
Show Figures

Figure 1

23 pages, 3401 KiB  
Article
Modulation of Protein Dynamics by Glycerol in Water-Soluble Chlorophyll-Binding Protein (WSCP)
by Mina Hajizadeh, Maksym Golub, Inga Bektas, Leonid L. Rusevich, Jan P. Embs, Wiebke Lohstroh, Harald Paulsen and Jörg Pieper
Crystals 2025, 15(6), 569; https://doi.org/10.3390/cryst15060569 - 17 Jun 2025
Cited by 1 | Viewed by 278
Abstract
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble [...] Read more.
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble Chlorophyll-Binding Protein (WSCP), we measured Quasielastic Neutron Scattering (QENS) spectra over a wide temperature range between 100 and 300 K. The impact of glycerol, a common stabilizer, is investigated by comparing WSCP dissolved in a glycerol–water-containing buffer (WSCPW+G) with WSCP in a water-containing buffer (WSCPW). The results indicate that conformational protein dynamics are widely suppressed below 200 K but increase above this threshold, with the appearance of localized protein motions on the picosecond timescale. Glycerol appears to limit protein mobility between 280 and 300 K due to its high viscosity and hydrogen bonding in contrast to WSCP in water. Inelastic Neutron Scattering (INS) reveals the vibrational dynamics of WSCP with pronounced low-energy protein vibrations observed at about 2.5 and 6 meV. In the presence of glycerol, however, a stiffening of the vibrational motions which shifts the vibrational peaks to higher frequencies is observed. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Characterization of Heat Tolerance in Two Apple Rootstocks Using Chlorophyll Fluorescence as a Screening Method
by Ines Mihaljević, Marija Viljevac Vuletić, Vesna Tomaš, Dominik Vuković and Zvonimir Zdunić
Agronomy 2025, 15(6), 1442; https://doi.org/10.3390/agronomy15061442 - 13 Jun 2025
Viewed by 542
Abstract
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the [...] Read more.
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the photochemical reactions and heat tolerance of specific rootstocks have still not been sufficiently investigated. Identification of rootstocks with better photosynthetic performance and adaptation to heat stress enables the selection of rootstocks, which could contribute to stable yields and good fruit quality even at elevated temperatures. In this study, chlorophyll a fluorescence (ChlF) induction kinetics was used to investigate the heat tolerance between two apple rootstocks (M.9 and G.210). In addition, we employed lipid peroxidation measurements, hydrogen peroxide quantification, proline content, and total phenolic and flavonoid assessments. Analysis of chlorophyll fluorescence parameters and OJIP curves (different steps of the polyphasic fluorescence transient; O–J–I–P phases) revealed significant differences in their responses, with higher values of the PIABS parameter indicating better PS II stability and overall photosynthetic efficiency in M.9 rootstock. The higher contents of chlorophyll, carotenoids, proline, and significant increase in the accumulation of phenolics, and flavonoids in this rootstock also contributed to its better adaptation to heat stress. Oxidative stress was more pronounced in G.210 through higher H2O2 and MDA levels, which could point to its lower capacity to adjust to heat stress conditions. This research can provide a scientific basis for further breeding programs and growing plans due to climate change and the occurrence of extremely high temperatures. Full article
Show Figures

Figure 1

19 pages, 2386 KiB  
Article
Melatonin Improves Salt Tolerance in Tomato Seedlings by Enhancing Photosystem II Functionality and Calvin Cycle Activity
by Xianjun Chen, Bi Chen, Yao Jiang, Jianwei Zhang, Mingjie Liu, Qin Yang and Huiying Liu
Plants 2025, 14(12), 1785; https://doi.org/10.3390/plants14121785 - 11 Jun 2025
Viewed by 509
Abstract
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results [...] Read more.
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results showed that salt stress significantly reduced chlorophyll content and impaired photosystem II (PSII) functionality, as evidenced by the increased minimum fluorescence (Fo) and decreased maximum quantum efficiency of PSII (Fv/Fm) and effective PSII quantum yield (ΦPSII). MT application mitigated these negative effects, as reflected by higher Fv/Fm, increased chlorophyll content, and lower non-photochemical quenching (NPQ). In addition, MT-treated plants exhibited improved PSII electron transport and more efficient use of absorbed light energy, as shown by elevated ΦPSII and qP values. These changes suggest improved PSII functional stability and reduced excess thermal energy dissipation. Furthermore, MT significantly enhanced both the activity and expression of key enzymes involved in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Rubisco activase (RCA), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphatase (FBPase), fructose-bisphosphate aldolase (FBA), transketolase (TK), and sedoheptulose-1,7-bisphosphatase (SBPase), thereby promoting carbon fixation and ribulose-1,5-bisphosphate (RuBP) regeneration under salt stress. Conversely, inhibition of endogenous MT synthesis by p-CPA exacerbated salt stress damage, further confirming MT’s crucial role in salt tolerance. These findings demonstrate that exogenous MT enhances salt tolerance in tomato seedlings by simultaneously improving photosynthetic electron transport efficiency and upregulating the activity and gene expression of key Calvin cycle enzymes, thereby promoting the coordination between light reactions and carbon fixation processes. This study provides valuable insights into the comprehensive regulatory role of MT in maintaining photosynthetic performance under saline conditions. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

Back to TopTop