An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Evaluation of Bacterial Viability
2.2. Germination and GSI Evaluation of G. max
2.3. Growth and Physiological Evaluations in G. max Plants
2.4. Experimental Design and Statistical Analysis
3. Results
4. Discussion
4.1. Starch Had a Positive Effect on Cell Viability in A. brasilense Formulations. In M. symbioticum, Both Starch and Trehalose Showed Beneficial Effects. In Contrast, CMC Negatively Affected the Viability of B. diazoefficiens and P. alvei During Storage
4.2. The Starch Present in A. brasilense and M. symbioticum Formulations Indirectly Improved Growth and Physiology Parameters of G. max Plants
4.3. Trehalose Improved the Growth and Physiological Performance of G. max in B. diazoefficiens Formulations and Enhanced Gas Exchange and Photochemical Parameters in M. symbioticum Formulations
4.4. The Presence of CMC in M. symbioticum Formulations Negatively Impacted Gas Exchange Parameters and Chlorophyll a Fluorescence in G. max Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiuza, D.A.F.; Vitorino, L.C.; Silva, C.F.D.; Trombela, N.T.D.S.; Ventura, M.V.A.; Bessa, L.A.; Souchie, E.L. Plant growth-promoting rhizobacteria isolated from cultivated soils using Glycine max L. plants as bait. Ciênc. Rural 2023, 54, e20220684. [Google Scholar] [CrossRef]
- Fatmawati, U.; Sari, D.P.; Santosa, S.; Wiraswati, S.M. IAA-producing and phosphate solubilizer of rhizosphere actinobacteria consortium to promote plant growth in soybean (Glycine max L.). Asian J. Agric. Biol. 2023, 4, 1–9. [Google Scholar] [CrossRef]
- Yaghoubian, I.; Modarres-Sanavy, S.A.M.; Smith, D.L. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant Physiol. Biochem. 2022, 191, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Naamala, J.; Smith, D.L. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy 2020, 10, 1179. [Google Scholar] [CrossRef]
- Chesneau, G.; Torres-Cortes, G.; Briand, M.; Darrasse, A.; Preveaux, A.; Marais, C.; Jacques, M.-A.; Shade, A.; Barret, M. Temporal dynamics of bacterial communities during seed development and maturation. FEMS Microbiol. Ecol. 2020, 96, fiaa190. [Google Scholar] [CrossRef]
- Kuzhuppillymyal-Prabhakarankutty, L.; Tamez-Guerra, P.; Gomez-Flores, R.; Rodriguez-Padilla, M.C.; Ek-Ramos, M.J. Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World J. Microbiol. Biotechnol. 2020, 36, 47. [Google Scholar] [CrossRef]
- Yagmur, B.; Gunes, A. Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanz. 2021, 73, 219–228. [Google Scholar] [CrossRef]
- Dowarah, B.; Gill, S.S.; Agarwala, N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J. Plant Growth Regul. 2021, 41, 1429–1444. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Mohapatra, P.K.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M.; et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 2020, 43, 3062–3092. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Koskey, G.; Mburu, S.W.; Awino, R.; Njeru, E.M.; Maingi, J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front. Sustain. Food Syst. 2021, 5, 130. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Berninger, T.; González López, Ó.; Bejarano, A.; Preininger, C.; Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 2018, 11, 277–301. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Zayed, M.S. Advances in formulation development technologies. In Microbial Inoculants in Sustainable Agricultural Productivity, 2nd ed.; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 219–237. [Google Scholar] [CrossRef]
- Chaudhary, T.; Dixit, M.; Gera, R.; Shukla, A.K.; Prakash, A.; Gupta, G.; Shukla, P. Techniques for improving formulations of bioinoculants. 3 Biotech 2020, 10, 199. [Google Scholar] [CrossRef]
- Jaiswal, A.; Kumari, G.; Upadhyay, V.K.; Pradhan, J.; Pramanik, H.S.K. A methodology to develop liquid formulation of biofertilizer technology. Pharma Innov. J. 2023, 12, 875–881. [Google Scholar]
- Dianawati, D.; Mishra, V.; Shah, N.P. Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1685–1716. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Fernández, M.; Pagnussat, L.A.; Borrajo, M.P.; Perez Bravo, J.J.; Francois, N.J.; Creus, C.M. Chitosan/starch beads as bioinoculants carrier: Long-term survival of bacteria and plant growth promotion. Appl. Microbiol. Biotechnol. 2022, 106, 7963–7972. [Google Scholar] [CrossRef]
- Velloso, C.C.; Borges, R.; Badino, A.C.; Oliveira-Paiva, C.A.; Ribeiro, C.; Farinas, C.S. Modulation of starch-based film properties for encapsulation of microbial inoculant. Int. J. Biol. Macromol. 2024, 283, 137605. [Google Scholar] [CrossRef]
- Liu, L.; Xie, S.; Zhu, Y.; Zhao, H.; Zhang, B. Sodium carboxymethyl celluloses as a cryoprotectant for survival improvement of lactic acid bacterial strains subjected to freeze-drying. Int. J. Biol. Macromol. 2024, 260, 129468. [Google Scholar] [CrossRef] [PubMed]
- França, C.R.R.S.; Lira Junior, M.A.; Figueiredo, M.D.V.B.; Stamford, N.P.; Silva, G.A. Feasibility of rhizobia conservation by liquid conditioners. Rev. Ciênc. Agron. 2013, 44, 661–668. [Google Scholar] [CrossRef]
- Maiti, A.; Daschakraborty, S. Unraveling the molecular mechanisms of trehalose-mediated protection and stabilization of Escherichia coli lipid membrane during desiccation. J. Phys. Chem. B 2023, 127, 4496–4507. [Google Scholar] [CrossRef] [PubMed]
- Brasil; Ministério da Agricultura e Reforma Agrária, Coordenação de Laboratório Vegetal. Regras Para Análise de Sementes; Ministério da Agricultura e Reforma Agrária, Coordenação de Laboratório Vegetal: Brasília, Brazil, 2009. [Google Scholar]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; CCR Press: London, UK; New York, NY, USA, 2000; pp. 445–483. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. The comparison of dendrograms by objective methods. Taxon 1962, 11, 33–40. [Google Scholar] [CrossRef]
- Garcia-Vallve, S.; Palau, J.; Romeu, A. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol. Biol. Evol. 1999, 16, 1125–1134. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 December 2024).
- Sharma, H.; Sharma, S.; Bajwa, J.; Chugh, R.; Kumar, D. Polymeric carriers in probiotic delivery system. Carbohydr. Polym. Technol. Appl. 2023, 5, 100301. [Google Scholar] [CrossRef]
- Kawakita, R.; Leveau, J.H.; Jeoh, T. Optimizing viability and yield and improving stability of Gram-negative, non-spore forming plant-beneficial bacteria encapsulated by spray-drying. Bioprocess Biosyst. Eng. 2021, 44, 2289–2301. [Google Scholar] [CrossRef]
- Fernandes Júnior, P.I.; Rohr, T.G.; Oliveira, P.J.D.; Xavier, G.R.; Rumjanek, N.G. Polymers as carriers for rhizobial inoculant formulations. Pesqui. Agropecu. Bras. 2009, 44, 1184–1190. [Google Scholar] [CrossRef]
- Schoebitz, M.; Simonin, H.; Poncelet, D. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J. Microencapsul. 2012, 29, 532–538. [Google Scholar] [CrossRef]
- Viana, J.L.; da Silva, J.S.; de Mattos, G.C.; Pinto, M.C.; Dutra, L.D.S.; Carvalho, L.L.D.A.; Pinto, J.C.C.S.; Pinheiro, V.C.S.; Roque, R.A. Microencapsulation of Bacillus thuringiensis strains for the control of Aedes aegypti. Exp. Parasitol. 2023, 255, 108654. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Román-Aguirre, M.; Toxqui-Terán, A.; Espinosa-Solís, V.; Franco-Vega, A.; Leyva-Porras, C. Blends of carbohydrate polymers for the co-microencapsulation of Bacillus clausii and quercetin as active ingredients of a functional food. Polymers 2022, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, B.; Zhu, Y.; Liu, L.; Huang, Y.; Lu, M.; Zhu, X.; Gao, Y. Efeito da maltodextrina na estabilidade oxidativa de microcápsulas de corpos de óleo de soja induzidos por ultrassom. Front. Nutr. 2022, 9, 1071462. [Google Scholar] [CrossRef]
- Ma, X.; Wang, X.; Cheng, J.; Nie, X.; Yu, X.; Zhao, Y.; Wang, W. Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol. Control 2015, 90, 34–41. [Google Scholar] [CrossRef]
- Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate–bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097. [Google Scholar] [CrossRef]
- He, Y.; Wu, Z.; Ye, B.-C.; Wang, J.; Guan, X.; Zhang, J. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur. J. Soil Biol. 2016, 75, 135–141. [Google Scholar] [CrossRef]
- Wu, L.Z.; Guo, S.; Qin, C.; Li, C. Encapsulation of R. planticola Rs-2 from alginate–starch–bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 2012, 39, 317–327. [Google Scholar] [CrossRef]
- Lopes, M.M.; Lodi, L.A.; Oliveira-Paiva, C.A.D.; Farinas, C.S. Emulsion/cross-linking encapsulation of Bacillus in starch/PVA-based microparticles for agricultural applications. ACS Agric. Sci. Technol. 2024, 4, 490–499. [Google Scholar] [CrossRef]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector—Biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.J.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Silva, M.F.D.; Oliveira, P.J.D.; Xavier, G.R.; Rumjanek, N.G.; Reis, V.M. Inoculants containing polymers and endophytic bacteria for the sugarcane crop. Pesqui. Agropecu. Bras. 2009, 44, 1437–1443. [Google Scholar] [CrossRef]
- Almeida, J.C.D.; Favero, V.O.; Rouws, J.R.C.; Freitas, C.D.S.A.; Sousa, É.B.D.; Rocha, J.F.D.; Chantre, N.C.S.; Xavier, G.R.; Oliveira, P.J.; Rumjanek, N.G. Inoculant formulation for Bradyrhizobium spp.: Optimizing CMC/starch blends for improved performance. Agriculture 2025, 15, 1010. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, G.; Long, H.; Liao, Y.; Wu, L.; Huang, W.; Liu, X. Contribution of trehalose to ethanol stress tolerance of Wickerhamomyces anomalus. BMC Microbiol. 2023, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Herdeiro, R.S.; Pereira, M.D.; Panek, A.D.; Eleutherio, E.C.A. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Kuczyńska-Wiśnik, D.; Stojowska-Swędrzyńska, K.; Laskowska, E. Intracellular protective functions and therapeutical potential of trehalose. Molecules 2024, 29, 2088. [Google Scholar] [CrossRef]
- Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H.; Crowe, L.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. [Google Scholar] [CrossRef]
- Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994, 58, 755–805. [Google Scholar] [CrossRef]
- Aukema, K.G.; Wang, M.; de Souza, B.; O’Keane, S.; Clipsham, M.; Wackett, L.P.; Aksan, A. Core-shell encapsulation formulations to stabilize desiccated Bradyrhizobium against high environmental temperature and humidity. Microb. Biotechnol. 2022, 15, 2391–2400. [Google Scholar] [CrossRef]
- Nelson, B.; Wilcox, C. Trehalose: A Powerful Excipient in the Formulation Toolbox. 2015. Available online: https://drug-dev.com/trehalose-a-powerful-excipient-in-the-formulation-toolbox/ (accessed on 6 February 2025).
- Lee, J.; Lin, E.W.; Lau, U.Y.; Hedrick, J.L.; Bat, E.; Maynard, H.D. Trehalose glycopolymers as excipients for protein stabilization. Biomacromolecules 2013, 14, 2561–2569. [Google Scholar] [CrossRef]
- Chompa, S.S.; Zuan, A.; Amin, A.M.; Hun, T.G.; Hamzah, A.; Nabayi, A. Carrier based liquid bio-formulation of salt-tolerant PGPR Bacillus species for prolonged survivability. Sains Malays. 2024, 53, 1055–1065. [Google Scholar] [CrossRef]
- Gopi, G.K.; Meenakumari, K.S.; Nysanth, N.S.; Subha, P. An optimized standard liquid carrier formulation for extended shelf-life of plant growth promoting bacteria. Rhizosphere 2019, 11, 100160. [Google Scholar] [CrossRef]
- Aeron, A.; Khare, E.; Arora, N.K.; Maheshwari, D.K. Practical use of CMC-amended rhizobial inoculant for Mucuna pruriens cultivation to enhance the growth and protection against Macrophomina phaseolina. J. Gen. Appl. Microbiol. 2012, 58, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, K.A.; Ramaswamy, H.S.; Doyon, G.; Toupin, C. Effects of concentration and temperature on carboxymethylcellulose rheology. Int. J. Food Sci. Technol. 1994, 29, 243–253. [Google Scholar] [CrossRef]
- Niu, F.; Gu, F.; Zhao, M.; Gao, Y.; Tu, W.; Kou, M.; Pan, W. Aggregation and growth mechanism of ovalbumin and sodium carboxymethylcellulose colloidal particles under thermal induction. Biomacromolecules 2023, 24, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Hydrocolloids. In Gluten-Free Cereal Products and Beverages; Arendt, E.K., Bello, F.D., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 203–215. [Google Scholar] [CrossRef]
- Dal Bello, G.M.; Mónaco, C.I.; Simón, M.R. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J. Microbiol. Biotechnol. 2002, 18, 627–636. [Google Scholar] [CrossRef]
- Crittenden, R.; Laitila, A.; Forssell, P.; Matto, J.; Saarela, M.; Mattila-Sandholm, T.; Myllarinen, P. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl. Environ. Microbiol. 2001, 67, 3469–3475. [Google Scholar] [CrossRef]
- Bueno, P.A.A.; Balestri, E.L.; Rosiello, R.D.A.V.F.; Silva, C.C.; Gualdi, B.L.; Oliveira, V.M.A.T.; Cristófoli, J.B.; Sekine, E.S.; Bueno, R.O. Use of starch manufacturer residue in the production of inoculating biofertilizer. Rev. Eletrôn. Gest. Educ. Tecnol. Ambient. 2019, 23, 13. [Google Scholar] [CrossRef]
- Hungria, M.; Loureiro, M.F.; Mendes, I.C.; Campo, R.J.; Graham, P.H. Inoculant preparation, production and application. In Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment; Werner, D., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 223–253. [Google Scholar]
- Bashan, Y.; Hernandez, J.P.; Leyva, L.A.; Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 2002, 35, 359–368. [Google Scholar] [CrossRef]
- Bailey, B.A.; Hebbar, K.P.; Strem, M.; Lumsden, R.D. Formulations of Fusarium oxysporum f.sp. erythroxyli for biocontrol of Erythroxylum coca var. coca. Weed Sci. 1998, 46, 682–689. [Google Scholar] [CrossRef]
- He, X.; He, F.; Hang, J.; Li, H.; Chen, Y.; Wei, P.; Chen, K.; Li, Y.; OuYang, P. Enhanced production of exopolysaccharides using industrial grade starch as sole carbon source. Bioproc. Biosyst. Eng. 2018, 41, 811–817. [Google Scholar] [CrossRef]
- Beauregard, P.B.; Chai, Y.; Vlamakis, H.; Losick, R.; Kolter, R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. USA 2013, 110, E1621–E1630. [Google Scholar] [CrossRef]
- Lertsarawut, P.; Rattanawongwiboon, T.; Tangthong, T.; Laksee, S.; Kwamman, T.; Phuttharak, B.; Romruensukharom, P.; Suwanmala, P.; Hemvichian, K. Starch-based super water absorbent: A promising and sustainable way to increase survival rate of trees planted in arid areas. Polymers 2021, 13, 1314. [Google Scholar] [CrossRef] [PubMed]
- Argüelles, J.C. Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Arch. Microbiol. 2000, 174, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Ferreras, A.; Soto, M.J.; Pérez-Arnedo, R.; Olivares, J.; Sanjuán, J. Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J. Bacteriol. 2009, 191, 7490–7499. [Google Scholar] [CrossRef] [PubMed]
- Moussaid, S.; Domínguez-Ferreras, A.; Muñoz, S.; Aurag, J.; Berraho, E.B.; Sanjuán, J. Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis 2015, 67, 103–111. [Google Scholar] [CrossRef]
- Sugawara, M.; Cytryn, E.J.; Sadowsky, M.J. Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl. Environ. Microbiol. 2010, 76, 1071–1081. [Google Scholar] [CrossRef]
- Cytryn, E.J.; Sangurdekar, D.P.; Streeter, J.G.; Franck, W.L.; Chang, W.S.; Stacey, G.; Emerich, D.W.; Joshi, T.; Xu, D.; Sadowsky, M.J. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 2007, 189, 6751–6762. [Google Scholar] [CrossRef]
- Streeter, J.G. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J. Appl. Microbiol. 2003, 95, 484–491. [Google Scholar] [CrossRef]
- Suárez, R.; Wong, A.; Ramírez, M.; Barraza, A.; Orozco, M.D.C.; Cevallos, M.A.; Lara, M.; Hernández, G.; Iturriaga, G. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant Microbe Interact. 2008, 21, 958–966. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Duan, J.; DiBernardo, M.; Zetter, E.; Campos-García, J.; Glick, B.R.; Santoyo, G. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front. Microbiol. 2019, 10, 1392. [Google Scholar] [CrossRef]
- Streeter, J.G. Accumulation of alpha, alpha-trehalose by Rhizobium bacteria and bacteroids. J. Bacteriol. 1985, 164, 78–84. [Google Scholar] [CrossRef]
- Kandror, O.; DeLeon, A.; Goldberg, A.L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 2002, 99, 9727–9732. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Park, E.; Glick, B.R. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 2007, 53, 912–918. [Google Scholar] [CrossRef] [PubMed]
- di Gennaro, M.; Della Sala, F.; Vinale, F.; Borzacchiello, A. Design of carboxymethylcellulose/poloxamer-based bioformulation embedding Trichoderma afroharzianum for agricultural applications. Langmuir 2024, 40, 12159–12166. [Google Scholar] [CrossRef] [PubMed]
- Sanz, T.; Fernández, M.A.; Salvador, A.; Muñoz, J.; Fiszman, S.M. Thermogelation properties of methyl-cellulose (MC) and their effect on a batter formula. Food Hydrocoll. 2005, 19, 141–147. [Google Scholar] [CrossRef]
- Lauer, N. Elevated root zone pH and NaCl leads to decreased foliar nitrogen, chlorophyll, and physiological performance in trembling aspen (Populus tremuloides), green alder (Alnus alnobetula), tamarack (Larix laricina), and white spruce (Picea glauca). Trees 2023, 37, 1041–1054. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Rivera, D.; Obando, M.; Barbosa, H.; Rojas Tapias, D.; Bonilla Buitrago, R. Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ. Sci. 2014, 19, 265–275. [Google Scholar] [CrossRef]
- Rumbiak, J.E.R.; Hilal, S. Increasing shelf life of rhizobacteria formula with alginate in encapsulation during storage. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012025. [Google Scholar] [CrossRef]
- Turenne, C.Y.; Snyder, J.W.; Alexander, D.C. Bacillus and other aerobic endospore-forming bacteria. In Manual of Clinical Microbiology; Wiley: Hoboken, NJ, USA, 2015; pp. 441–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conceição, F.R.S.d.; Bessa, L.A.; Teixeira, M.B.; Cruvinel, B.G.; Vitorino, L.C. An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L. Agronomy 2025, 15, 1668. https://doi.org/10.3390/agronomy15071668
Conceição FRSd, Bessa LA, Teixeira MB, Cruvinel BG, Vitorino LC. An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L. Agronomy. 2025; 15(7):1668. https://doi.org/10.3390/agronomy15071668
Chicago/Turabian StyleConceição, Francisco Rafael Santos da, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel, and Luciana Cristina Vitorino. 2025. "An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L." Agronomy 15, no. 7: 1668. https://doi.org/10.3390/agronomy15071668
APA StyleConceição, F. R. S. d., Bessa, L. A., Teixeira, M. B., Cruvinel, B. G., & Vitorino, L. C. (2025). An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L. Agronomy, 15(7), 1668. https://doi.org/10.3390/agronomy15071668