Enhancing Plant Drought Tolerance: Challenges and Innovations

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 348

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
Interests: crop management and production; weed management; weed community composition; integrated weed management (IWM); soil fertility and plant nutrition; sustainable cropping systems; environmental science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
Interests: agroecology; organic agriculture; integrated agriculture; fertilizer management; weed management; soil tillage; greenhouse gas emissions; carbon cycle
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water scarcity presents a major threat to global agriculture, particularly as climate change intensifies the occurrence and magnitude of drought events. Many plant species, however, have developed remarkable adaptations that enable them to endure and flourish under water-stressed conditions. Elucidating the underlying mechanisms of these adaptations is essential for promoting sustainable agriculture and safeguarding food security in an increasingly dry world.

The Special Issue titled "Enhancing Plant Drought Tolerance: Challenges and Innovations" seeks to compile cutting-edge research exploring physiological, molecular, and agronomic methods to boost plant resilience in drought-prone environments. We encourage submissions that examine drought tolerance mechanisms, genetic improvements, and biotechnological solutions, as well as practical approaches to enhance water use efficiency and crop yields. Worldwide efforts to create drought-resistant crops are crucial for sustaining agricultural productivity in regions with limited water resources. This Special Issue will serve as a forum for diverse viewpoints and emerging studies that tackle the obstacles and possibilities in managing plant drought tolerance.

We invite research articles addressing topics such as drought tolerance mechanisms, the influence of genetic engineering and breeding programs, agricultural interventions, and the effects of climate change on plant stress responses.

Dr. Emanuele Radicetti
Dr. Roberto Mancinelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drought tolerance mechanisms
  • water use efficiency
  • genetic engineering in plants
  • agronomic practices for drought resilience
  • stress physiology in crops
  • molecular breeding for drought tolerance
  • biotechnological advancements in agriculture
  • climate change and crop resilience
  • soil management under drought
  • sustainable agriculture in water-limited environments

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 3023 KiB  
Article
Pipecolic Acid, a Drought Stress Modulator, Boosts Chlorophyll Assimilation, Photosynthetic Performance, Redox Homeostasis, and Osmotic Adjustment of Drought-Affected Hordeum vulgare L. Seedlings
by Nagihan Aktas, Saad Farouk, Amal Ahmed Mohammed Al-Ghamdi, Ahmed S. Alenazi, Mona Abdulaziz Labeed AlMalki and Burcu Seckin Dinler
Plants 2025, 14(13), 1949; https://doi.org/10.3390/plants14131949 - 25 Jun 2025
Abstract
While pipecolic acid (Pip) mediates morpho-physiological and molecular responses during biotic stress, its roles under drought remain an inexpressible mystery. The investigation aimed to elucidate the roles of a 30μM Pip pretreatment in alleviating drought injury on barley (Hordeum vulgare L. cv, [...] Read more.
While pipecolic acid (Pip) mediates morpho-physiological and molecular responses during biotic stress, its roles under drought remain an inexpressible mystery. The investigation aimed to elucidate the roles of a 30μM Pip pretreatment in alleviating drought injury on barley (Hordeum vulgare L. cv, Bülbül89) seedlings. Pip pretreatment under normal or drought conditions lowered the osmotic potential (Ψs) and water saturation deficit (WSD), while optimizing the relative water content (RWC), triggered osmotically energetic molecules (OEM) and salicylic acid (SA) accumulation, improving osmotic adjustment (OA), and boosting water retention and uptake capacity (WTC, and WUC), alongwith a considerable improvement in seedling growth over non-treated plants under such conditions. Additionally, Pip pretreatment improved chlorophyll (Chl), the chlorophyll stability index (CSI), pheophytina, chlorophyllidea (chlidea), chlorophyllideb (chlideb), chla/chlidea, chlb/chlideb, protoporphyrin, Mg-protoporphyrin, protochlorophyllide, and photosynthetic performance over non-treated plants under such conditions. Pip pretreatment preserves redox homeostasis in drought-stressed plants by accumulating antioxidant solutes alongside the activation of superoxide dismutase and glutathione reductase over non-treated plants. Drought distinctly reduced Ψs (more negative), RWC, photosynthetic pigment, CSI, chlorophyll assimilation intermediate, and photosynthetic performance, with an increment in chlorophyll degradation intermediate and nonenzymatic antioxidant solutes. Drought maintains OA capacity via a hyper-accumulation of OEM and SA, which results in higher WSD, WTC, and WUC. Drought triggered an oxidative burst, which was associated with a decline in the membrane stability index. These findings highlight Pip’s capability for lessening drought stress-induced restriction in barley seedlings via bolstering oxidative homeostasis, OA capacity, and stabilizing chlorophyll biosynthesis. Future research must elucidate the precise molecular mechanisms underlying Pip’s action in alleviating drought injury. Full article
(This article belongs to the Special Issue Enhancing Plant Drought Tolerance: Challenges and Innovations)
Show Figures

Figure 1

Back to TopTop