Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize
Abstract
1. Introduction
2. Results
2.1. Identification of ZmAAP1 Genes in 55 Maize Inbred Lines
2.2. Cluster Analysis, Sequence Motif, and Conserved Domain Analysis of AAP1 Proteins
2.3. Cis-Element Analysis of the AAP1 Genes
2.4. Expression Profiles of ZmAAP1 in Maize During Growth and Development
2.5. Expression Patterns of ZmAAP1 Under Heat and Drought Stress
2.6. Analysis of the Insertion Sequence Stability of the Transgenic Maize Lines na1, na2, and na3 Across Generations
2.7. Phenotypic Characterization of the Target Gene AtAAP1 in Transgenic Maize Lines
3. Discussion
3.1. Genetic and Structural Diversity of ZmAAP1 Proteins in Maize
3.2. Transcriptional Regulation and Functional Diversity of ZmAAP1
3.3. Transgenic Maize Lines with Enhanced Amino Acid Transport Efficiency
3.4. Implications for Crop Improvement
4. Methods
4.1. Identification and Sequence Analysis of the ZmAAP1 Genes in Maize
4.2. Domain and Motif Structure Diagram of ZmAAP1s
4.3. Promoter Cis-Acting Element Analysis of the ZmAAP1 Genes in Maize
4.4. Public RNA-Seq Expression Data Analysis
4.5. Plant Materials and Treatments
4.6. Cloning and Transformation of AtAAP1 and the Acquisition of Genetically Modified Maize
4.7. Expression Analysis of ZmAAP1 in Different Development Stages and Different Tissues
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Qi, S.; Wang, Y. Nitrate signaling and use efficiency in crops. Plant Commun. 2022, 3, 100353. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Curr. Opin. Plant Biol. 2015, 25, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Evenson, R.E.; Gollin, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can Less Yield More? Is Reducing Nutrient Input into the Environment Compatible with Maintaining Crop Production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [PubMed]
- Eisenbrand, G.; Gelbke, H.P. Assessing the Potential Impact on the Thyroid Axis of Environmentally Relevant Food Constituents/Contaminants in Humans. Arch. Toxicol. 2016, 90, 1841–1857. [Google Scholar] [CrossRef] [PubMed]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Burkart, M.; Stoner, J. Nitrate in aquifers beneath agricultural systems. Water Sci. Technol. 2007, 56, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Richard, A.M.; Diaz, J.H.; Kaye, A.D. Reexamining the risks of drinking-water nitrates on public health. Ochsner. J. 2014, 14, 392–398. [Google Scholar] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Kajala, K.; Covshoff, S.; Karki, S.; Woodfield, H.; Tolley, B.J.; Dionora, M.J.A.; Mogul, R.T.; Mabilangan, A.E.; Danila, F.R.; Hibberd, J.M.; et al. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 2011, 62, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; de Richter, D.; Chakraborty, D.; Pathak, H. Global Nitrogen Budgets in Cereals: A 50-Year Assessment for Maize, Rice, and Wheat Production Systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, B.-L.; Yu, X.; Gao, J.; Sun, J.; Su, Z.; Yu, S. Physiological Basis of Heterosis for Nitrogen Use Efficiency of Maize. Sci. Rep. 2019, 9, 18708. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, M.; Du, X.Q.; Wang, Z.F.; Wu, W.H.; Quintero, F.J.; Jin, X.H.; Li, H.D.; Wang, Y. Nrt1.5/Npf7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidopsis. Plant Cell 2017, 29, 2016–2026. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.R.; Ahmad, A.; Lochab, S.; Raghuram, N. Molecular Physiology of Plant N-Use Efficiency and Biotechnological Options for Its Enhancement. Curr. Sci. 2008, 94, 1394–1403. [Google Scholar]
- Wang, R.; Liu, D.; Crawford, N.M. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc. Natl. Acad. Sci. USA 1998, 95, 15134–15139. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, Y.; Ikeda, A.; Saiki, S.; von Wirén, N.; Yamaya, T.; Yamaguchi, J. Distinct Expression and Function of Three Ammonium Transporter Genes (OsAMT1;1–1;3) in Rice. Plant Cell Physiol. 2003, 44, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Fan, X.; Feng, H.; Miller, A.J.; Shen, Q.; Xu, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 2011, 34, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant nitrate transporters: From gene function to application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.-M.; Coschigano, K.T.; Oliveira, I.C.; Melo-Oliveira, R.; Coruzzi, G.M. The Molecular-Genetics of Nitrogen Assimilation into Amino Acids in Higher Plants. Annu. Rev. Plant Biol. 1996, 47, 569–593. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Grennan, A.K.; Pélissier, H.C.; Rentsch, D.; Tegeder, M. Characterization and expression of French bean amino acid transporter Pvaap1. Plant Sci. 2008, 174, 348–356. [Google Scholar] [CrossRef]
- Tegeder, M.; Rentsch, D. Uptake and Partitioning of Amino Acids and Peptides. Mol. Plant 2010, 3, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, M.; Tan, Q.; Grennan, A.K.; Patrick, J.W. Amino acid transporter expression and localisation studies in pea (Pisum sativum). Funct. Plant Biol. 2007, 34, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Chen, Z.; Luo, X.; Su, J.; Yao, G.; Xu, H.; Lin, F. Overexpression of AtAAP1 increased the uptake of an alanine-chlorantraniliprole conjugate in Arabidopsis thaliana. Environ. Sci. Pollut. Res. 2019, 26, 36680–36687. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.; Collier, R.; Trethewy, A.; Gould, G.; Sieker, R.; Tegeder, M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009, 59, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Rolletschek, H.; Hosein, F.; Miranda, M.; Heim, U.; Götz, K.P.; Schlereth, A.; Borisjuk, L.; Saalbach, I.; Wobus, U.; Weber, H. Ectopic Expression of an Amino Acid Transporter (Vfaap1) in Seeds of Vicia Narbonensis and Pea Increases Storage Proteins. Plant Physiol. 2005, 137, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, K.; Küster, H.; Radchuk, R.; Müller, M.; Weichert, H.; Fait, A.; Fernie, A.R.; Saalbach, I.; Weber, H. Increasing Amino Acid Supply in Pea Embryos Reveals Specific Interactions of N and C Metabolism, and Highlights the Importance of Mitochondrial Metabolism. Plant J. 2008, 55, 909–926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Garneau, M.G.; Majumdar, R.; Grant, J.; Tegeder, M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015, 81, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Huang, W.; Wu, B.; Fang, Z.; Wang, X.; Gibbs, D. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. J. Exp. Bot. 2020, 71, 4763–4777. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.G.; Bucher, C.P.C.; Santos, L.A.; Lerin, J.; Catarina, C.S.; Fernandes, M.S. The amino acid transporter OsAAP1 regulates the fertility of spikelets and the efficient use of N in rice. Plant Soil 2022, 480, 507–521. [Google Scholar] [CrossRef]
- Han, M.; Okamoto, M.; Beatty, P.H.; Rothstein, S.J.; Good, A.G. The Genetics of Nitrogen Use Efficiency in Crop Plants. Annu. Rev. Genet. 2015, 49, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wu, B.; Ji, Y. The Amino Acid Transporter OsAAP4 Contributes to Rice Tillering and Grain Yield by Regulating Neutral Amino Acid Allocation through Two Splicing Variants. Rice 2021, 14, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Wu, B.; Wang, J.; Zhu, W.; Nie, H.; Qian, J.; Huang, W.; Fang, Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018, 16, 1710–1722. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Kong, H.; Li, Y.; Wang, L.; Zhong, M.; Sun, L.; Gao, G.; Zhang, Q.; Luo, L.; Wang, G.; et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat. Commun. 2014, 5, 4847. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability 2014, 6, 4273–4286. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Fischer, G.; Van Velthuizen, H.; Reusser, D.E.; Kropp, J.P. Closing Yield Gaps: How Sustainable Can We Be? PLoS ONE 2015, 10, e0129487. [Google Scholar] [CrossRef] [PubMed]
- Swain, E.Y.; Rempelos, L.; Orr, C.H.; Hall, G.; Chapman, R.; Almadni, M.; Stockdale, E.A.; Kidd, J.; Leifert, C.; Cooper, J.M. Optimizing nitrogen use efficiency in wheat and potatoes: Interactions between genotypes and agronomic practices. Euphytica 2014, 199, 119–136. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, w202–w208. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. Tbtools-Ii: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.; Zhang, S.; Zhang, Q.; Yu, X.; Huang, J.; Wei, X.; Huang, X.; Qiu, J.; Zhou, X. Conserved features and diversity attributes of chimeric RNAs across accessions in four plants. Plant Biotechnol. J. 2024, 22, 3151–3163. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jiang, Z.; Gao, L.; You, C.; Ma, X.; Wang, X.; Xu, X.; Mo, B.; Chen, X.; Liu, L. Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress. Plant Physiol. 2019, 181, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.M.; Hamilton, J.P.; Wood, J.C.; Esteban, E.; Pasha, A.; Vaillancourt, B.; Provart, N.J.; Buell, C.R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J. 2019, 97, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Hiei, Y.; Komari, T. Agrobacterium-Mediated Transformation of Maize. Nat. Protoc. 2007, 2, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
Line | Gene ID | Chromosome | Gene Localization | Exon Number | Protein Length (aa) | Protein MW (da) | pI | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|---|
Arabidopsis | AT1G58360 | Chr1 | 21,676,388..21,680,519 | 6 | 485 | 52,895.58 | 8.03 | plas: 11, golg: 2 |
A188 | Zm00056aa035386 | Chr7 | 4,587,814..4,590,133 | 5 | 489 | 52,762.31 | 7.52 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
A632 | Zm00092aa030742 | Chr7 | 4,003,500..4,005,772 | 5 | 483 | 52,112.5 | 7.36 | plas: 7.5, E.R.: 5, cyto_plas: 4.5 |
B104 | Zm00007a00026974 | scaffold7.87 | 124,806..126,646 | 5 | 512 | 55,367.24 | 8.10 | cyto: 4, plas: 4, chlo: 2, pero: 2, E.R.: 1 |
B73V5 | Zm00001eb299500 | Chr7 | 4,131,802..4,134,061 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
B84 | ZmB84.07G013300 | Chr7 | 4,176,235..4,178,492 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
B97 | Zm00018ab313690 | Chr7 | 4,024,415..4,026,800 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Chang7-2 | Zm00093aa028483 | Chr7 | 4,434,277..4,436,571 | 5 | 484 | 52,252.69 | 7.52 | plas: 7.5, E.R.: 6, cyto_plas: 4.5 |
CML103 | Zm00021ab390530 | Chr9 | 79,162,556..79,173,388 | 5 | 486 | 53,005.46 | 8.42 | plas: 11, golg: 2 |
CML228 | Zm00022ab304680 | Chr7 | 4,189,276..4,191,617 | 5 | 483 | 52,096.46 | 7.34 | plas: 7, E.R.: 5, chlo: 1 |
CML247 | Zm00023ab307940 | Chr7 | 3,970,939..3,973,184 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
CML277 | Zm00024ab305030 | Chr7 | 4,042,444..4,044,744 | 5 | 482 | 52,069.43 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
CML322 | Zm00025ab310550 | Chr7 | 4,116,561..4,118,973 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
CML333 | Zm00026ab302670 | Chr7 | 4,553,074..4,555,471 | 5 | 483 | 52,152.56 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
CML52 | Zm00019ab287350 | Chr7 | 4,330,757..4,333,005 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
CML69 | Zm00020ab389900 | Chr9 | 81,667,572..81,678,365 | 5 | 486 | 52,991.39 | 7.97 | plas: 11, golg: 2 |
Dan340 | Zm00094aa029166 | Chr7 | 4,162,675..4,164,968 | 5 | 483 | 52,152.56 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
DK105 | Zm00016a031965 | Chr7 | 4,545,926..4,547,766 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
EP1 | Zm00010a028426 | Chr7 | 4,773,048..4,774,862 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
F7 | Zm00011a028590 | Chr7 | 4,727,434..4,729,290 | 5 | 483 | 52,096.46 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
HP301 | Zm00027ab304530 | Chr7 | 4,245,097..4,247,332 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Huangzaosi | Zm00095aa029908 | Chr7 | 5,054,785..5,057,125 | 5 | 483 | 52,152.56 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
II14H | Zm00028ab307090 | Chr7 | 4,142,656..4,145,113 | 5 | 483 | 52,069.43 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Jing-724 | Zm00096aa031407 | Chr7 | 4,151,056..4,153,290 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Jing-92 | Zm00097aa030840 | Chr7 | 4,101,721..4,103,880 | 5 | 483 | 52,108.51 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
K0326Y | Zm00054a026320 | Chr7 | 4,263,322..4,265,541 | 5 | 489 | 52,764.29 | 7.52 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
Ki11 | Zm00030ab300360 | Chr7 | 4,021,247..4,023,521 | 5 | 483 | 52,104.5 | 7.34 | plas: 7, E.R.: 6 |
Ki3 | Zm00029ab313690 | Chr7 | 4,096,813..4,099,330 | 5 | 483 | 52,069.43 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Ky21 | Zm00031ab311220 | Chr7 | 4,452,423..4,454,691 | 5 | 484 | 52,240.64 | 7.52 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
la453 | Zm00045a034145 | Chr7 | 4,294,850..4,297,157 | 5 | 491 | 53,042.66 | 7.39 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
LH145 | 07G011200 | Chr7 | 3,634,265..3,636,507 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
LH244 | Zm00052a033964 | Chr7 | 4,185,287..4,187,577 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
M162W | Zm00033ab317210 | Chr7 | 4,442,058..4,444,280 | 5 | 483 | 52,138.54 | 7.34 | plas: 7, E.R.: 5, chlo: 1 |
M37W | Zm00032ab312130 | Chr7 | 4,501,878..4,504,131 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
MEX | ZMex07t023391 | Chr7 | 1,738,993..1,740,854 | 5 | 475 | 51,358.6 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Mo17 | Zm00014ba322500 | Chr7 | 4,062,253..4,064,583 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Mo18w | Zm00034ab320170 | Chr7 | 4,257,931..4,260,225 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Ms71 | Zm00035ab310900 | Chr7 | 4,280,209..4,282,542 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
NC350 | Zm00036ab308740 | Chr7 | 4,224,252..4,226,570 | 5 | 483 | 52,096.46 | 7.34 | plas: 7, E.R.: 5, chlo: 1 |
NC358 | Zm00037ab303850 | Chr7 | 4,311,993..4,314,286 | 5 | 483 | 52,168.52 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
NKH8431 | 07G011700 | Chr7 | 4,167,721..4,169,992 | 5 | 483 | 52,112.5 | 7.36 | plas: 7.5, E.R.: 5, cyto_plas: 4.5 |
Oh43 | Zm00039ab305460 | Chr7 | 4,154,135..4,156,404 | 5 | 483 | 52,108.51 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Oh7B | Zm00038ab306300 | Chr7 | 4,347,306..4,349,531 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
P39 | Zm00040ab318650 | Chr7 | 4,106,064..4,108,397 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
PE0075 | Zm00017a032359 | Chr7 | 4,602,676..4,604,512 | 5 | 483 | 52,108.51 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
PH207 | Zm00008a034417 | Chr9 | 78,976,202..78,988,500 | 6 | 486 | 53,064.49 | 8.42 | plas: 11, golg: 2 |
PHB47 | 07G012600 | Chr7 | 3,469,964..3,472,236 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
PHJ40 | 07G009200 | Chr7 | 2,969,776..2,972,048 | 5 | 483 | 52,170.54 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
S37 | Zm00100aa029860 | Chr7 | 3,833,435..3,835,747 | 5 | 483 | 52,108.51 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
SK | Zm00015a029128 | Chr7 | 4,492,711..4,495,028 | 5 | 482 | 52,054.42 | 7.20 | plas: 6, E.R.: 6, chlo: 1 |
Tx303 | Zm00041ab311140 | Chr7 | 4,491,349..4,493,647 | 5 | 484 | 52,226.61 | 7.52 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
Tzi8 | Zm00042ab312990 | Chr7 | 4,416,409..4,418,656 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
W22 | Zm00004b034751 | Chr7 | 4,377,245..4,379,604 | 5 | 489 | 52,764.29 | 7.52 | plas: 6.5, E.R.: 6, cyto_plas: 4 |
Xu178 | Zm00101aa029717 | Chr7 | 4,227,421..4,229,786 | 5 | 483 | 52,122.54 | 7.34 | plas: 6, E.R.: 6, chlo: 1 |
Ye478 | Zm00102aa030247 | Chr7 | 3,734,826..3,737,136 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Zheng58 | Zm00103aa030073 | Chr7 | 4,026,638..4,028,804 | 5 | 483 | 52,110.48 | 7.34 | plas: 6.5, E.R.: 5, cyto_plas: 4, chlo: 1 |
Variety Name | Female Parent | Male Parent |
---|---|---|
ZD958 | Zheng58 | Chang7-2 |
ZD958 (−/#) | Zheng58-AtAAP1-1-aa | Chang7-2 |
ZD958 (−/−) | Zheng58-AtAAP1-1-aa | Chang7-2-AtAAP1-1-aa |
ZD958(+/#) | Zheng58-AtAAP1-1-AA | Chang7-2 |
ZD958(+/+) | Zheng58-AtAAP1-1-AA | Chang7-2-AtAAP1-1-AA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Wang, Z.; Li, S.; Han, S. Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize. Plants 2025, 14, 2242. https://doi.org/10.3390/plants14142242
Zhu M, Wang Z, Li S, Han S. Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize. Plants. 2025; 14(14):2242. https://doi.org/10.3390/plants14142242
Chicago/Turabian StyleZhu, Mo, Ziyu Wang, Shijie Li, and Siping Han. 2025. "Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize" Plants 14, no. 14: 2242. https://doi.org/10.3390/plants14142242
APA StyleZhu, M., Wang, Z., Li, S., & Han, S. (2025). Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize. Plants, 14(14), 2242. https://doi.org/10.3390/plants14142242