Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,639)

Search Parameters:
Keywords = chemotherapeutic treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 362 KiB  
Article
The Predictive Value of Red Cell Distribution Width in End-Stage Colorectal Cancers’ 6-Month Palliative Chemotherapy Response—A Single Center’s Experience
by Maciej Jankowski, Krystyna Bratos, Joanna Wawer and Tomasz Urbanowicz
J. Pers. Med. 2025, 15(8), 359; https://doi.org/10.3390/jpm15080359 - 7 Aug 2025
Abstract
Backgrounds: The incidence of gastrointestinal cancers (GICs), though decreased in recent years, still accounts for 35% of all cancer-related mortality. The proper identification of risk factors, early diagnosis, and therapy optimization represent the three cornerstones of GIC treatment. In four-stage diseases, chemotherapy embodies [...] Read more.
Backgrounds: The incidence of gastrointestinal cancers (GICs), though decreased in recent years, still accounts for 35% of all cancer-related mortality. The proper identification of risk factors, early diagnosis, and therapy optimization represent the three cornerstones of GIC treatment. In four-stage diseases, chemotherapy embodies target therapy that may prolong patients’ expectancy when suitably applied. Patients and Methods: There were 133 (82 (62%) male and 51 (38%) female) consecutive patients with a median age of 70 (64–74) years who underwent palliative treatment due to four-stage colorectal cancer (CRC) between 2022 and 2024. The demographic, clinical, and laboratory data and applied chemotherapeutic protocols were evaluated regarding the response to applied therapy, resulting in complete or partial tumor regression. The advancement of the tumor was based on computed tomography (CT) performed before and 6 months after the chemotherapy. Results: The multivariable model revealed red cell distribution width (RDW) from peripheral blood analysis (OR: 0.81, 95% CI: 0.65–1.00, p = 0.049) as a possible predictor for systemic treatment response in colorectal cancer. The receiver operating characteristic curve revealed a predictive value of male sex and RDW prior to systemic therapy, with an area under the curve of 0.672, yielding a sensitivity of 70.0% and specificity of 58.1%. Conclusions: The results of our analysis point out the possible modulatory impact of RDW on six-month systemic therapy in colorectal terminal cancer management. Further studies are required to confirm the presented results. Full article
(This article belongs to the Special Issue Precision Medicine for Digestive Diseases)
Show Figures

Figure 1

18 pages, 435 KiB  
Review
Molecular and Glycosylation Pathways in Osteosarcoma: Tumor Microenvironment and Emerging Strategies Toward Personalized Oncology
by Georgian Longin Iacobescu, Antonio-Daniel Corlatescu, Horia Petre Costin, Razvan Spiridonica, Mihnea-Ioan-Gabriel Popa and Catalin Cirstoiu
Curr. Issues Mol. Biol. 2025, 47(8), 629; https://doi.org/10.3390/cimb47080629 - 7 Aug 2025
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical [...] Read more.
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical and chemotherapeutic approaches, the presence of metastatic or recurrent disease is still detrimental to the patient’s outcome. Major advances in understanding the molecular mechanisms of OS are needed to substantially improve outcomes for patients being treated for OS. This review integrates new data on the molecular biology, pathophysiology, and immune landscape of OS, as well as introducing salient areas of tumorigenesis underpinning these findings, such as chromothripsis; kataegis; cancer stem cell dynamics; and updated genetic, epigenetic, and glycosylation modifiers. In addition, we review promising biomarkers, diagnostic platforms, and treatments, including immunotherapy, targeted small molecule inhibitors, and nanomedicine. Using genomic techniques, we have defined OS for its significant genomic instability due to TP53 and RB1 mutations, chromosomal rearrangements, and aberrant glycosylation. The TME is also characterized as immunosuppressive and populated by tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, ultimately inhibiting immune checkpoint inhibitors. Emerging fields such as glycomics and epigenetics, as well as stem cell biology, have defined promising biomarkers and targets. Preclinical studies have identified that glycan-directed CAR therapies could be possible, as well as metabolic inhibitors and 3D tumor models, which presented some preclinical success and could allow for tumoral specificity and enhanced efficacy. OS is a biologically and clinically complex disease; however, advances in exploring the molecular and immunologic landscape of OS present new opportunities in biomarkers and the development of new treatment options with adjunctive care. Successful treatments in the future will require personalized, multi-targeted approaches to account for tumor heterogeneity and immune evasion. This will help us turn the corner in providing improved outcomes for patients with this resilient malignancy. Full article
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

18 pages, 3834 KiB  
Article
Therapeutic Potential of BMX-001 for Preventing Chemotherapy-Induced Peripheral Neuropathic Pain
by Tianshu Pan, Olawale A. Alimi, Bo Liu, Mena A. Krishnan, Mitchell Kuss, Wei Shi, Jairam Krishnamurthy, Jianghu James Dong, Rebecca E. Oberley-Deegan and Bin Duan
Pharmaceuticals 2025, 18(8), 1159; https://doi.org/10.3390/ph18081159 - 5 Aug 2025
Viewed by 21
Abstract
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail [...] Read more.
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail to address the underlying peripheral nerve damage, highlighting an urgent need for the development of new drugs. This study aimed to investigate the dual-function effects on normal cell protection and tumor suppression of BMX-001, a redox-active manganese metalloporphyrin that has demonstrated antioxidant and anti-inflammatory properties, which offers potential in protecting central nervous system tissues and treating CINP. Methods: This study assessed BMX-001’s different roles in protecting normal cells while acting as a pro-oxidant and pro-inflammatory molecule in cancer cells in vitro. We also evaluated its neuroprotective effect in preclinical PTX-induced CINP models in vivo. Results: Our results showed significant reductions in mechanical and cold allodynia, decreased pro-inflammatory cytokine levels, and restored antioxidant capacity in peripheral nerves and dorsal root ganglia (DRGs) following BMX-001 treatment. Conclusions: Overall, our study highlights the therapeutic potential of BMX-001 to mitigate CINP and enhance anticancer efficiency. Its dual-selective mechanism supports the future clinical investigation of BMX-001 as a novel adjunct to chemotherapeutic regimens. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

13 pages, 774 KiB  
Review
Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors
by Lara Colby, Caroline Preskitt, Jennifer S. Ho, Karl Balsara and Dee Wu
Int. J. Mol. Sci. 2025, 26(15), 7541; https://doi.org/10.3390/ijms26157541 - 5 Aug 2025
Viewed by 174
Abstract
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the [...] Read more.
Brain metastases are a common and deadly complication of many primary tumors. The progression of these tumors is poorly understood, and treatment options are limited. Two important components of tumor growth are hypoxia and angiogenesis. We conducted a review to look at the possibility of a symbiotic relationship between two transcription factors, Hypoxia-Inducible Factor 1α (HIF1α) and Vascular Endothelial Growth Factor (VEGF), and the role they play in metastasis to the brain. We delve further into this possible relationship by examining commonly used chemotherapeutic agents and their targets. Through an extensive literature review, we identified articles that provided evidence of a strong connection between these transcription factors and the growth of brain metastases, many highlighting a symbiotic relationship. Further supporting this, combinations of chemotherapeutic drugs with varying targets have increased the efficacy of treatment. Angiogenesis and hypoxia have long been known to play a large role in the invasion, growth, and poor outcomes of tumors. However, it is not fully understood how these factors influence one another during metastases. While prior studies have investigated the effects separately, we specifically delve into the synergistic and compounding effects that may exist between them. Our findings underscore the need for greater research allocation to investigate the possible symbiotic relationship between angiogenesis and hypoxia in brain metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Tumor Metastasis and Inhibition)
Show Figures

Figure 1

21 pages, 1133 KiB  
Review
Beyond Docetaxel: Targeting Resistance Pathways in Prostate Cancer Treatment
by Tayo Alex Adekiya
BioChem 2025, 5(3), 24; https://doi.org/10.3390/biochem5030024 - 1 Aug 2025
Viewed by 198
Abstract
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as [...] Read more.
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as the standard treatment, offering survival benefits and mitigation. However, its clinical impact is frequently undermined by the development of chemoresistance, which is a formidable challenge that leads to treatment failure and disease progression. The mechanisms driving docetaxel resistance are diverse and complex, encompassing modifications in androgen receptor signaling, drug efflux transporters, epithelial-mesenchymal transition (EMT), microtubule alterations, apoptotic pathway deregulation, and tumor microenvironmental influences. Recent evidence suggests that extracellular RNAs influence drug responses, further complicating the resistance landscape. This review offers a broad discussion on the mechanisms of resistance and explores novel therapeutic approaches to address them. These include next-generation taxanes, targeted molecular inhibitors, immunotherapies, and combination regimens that can be designed to counteract specific resistance pathways. By broadening our understanding of docetaxel resistance, this review highlights potential strategies to improve therapeutic efficacy and the potential to enhance outcomes in patients with advanced treatment-resistant prostate cancer. Full article
Show Figures

Figure 1

17 pages, 902 KiB  
Review
Cancer Stem Cells in Melanoma: Drivers of Tumor Plasticity and Emerging Therapeutic Strategies
by Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Raluca Niculescu, Iuliu Gabriel Cocuz, Andreea Raluca Cozac-Szöke, Bianca Andreea Lazar, Diana Maria Chiorean, Corina Eugenia Budin and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(15), 7419; https://doi.org/10.3390/ijms26157419 - 1 Aug 2025
Viewed by 176
Abstract
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack [...] Read more.
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack of specific markers (CD271, ABCB5, ALDH, Nanog) and the ability of cells to dynamically change their phenotype. Phenotype-maintaining signaling pathways (Wnt/β-catenin, Notch, Hedgehog, HIF-1) promote self-renewal, treatment resistance, and epithelial–mesenchymal transitions. Tumor plasticity reflects the ability of differentiated cells to acquire stem-like traits and phenotypic flexibility under stress conditions. The interaction of CSCs with the tumor microenvironment accelerates disease progression: they induce the formation of cancer-associated fibroblasts (CAFs) and neo-angiogenesis, extracellular matrix remodeling, and recruitment of immunosuppressive cells, facilitating immune evasion. Emerging therapeutic strategies include immunotherapy (immune checkpoint inhibitors), epigenetic inhibitors, and nanotechnologies (targeted nanoparticles) for delivery of chemotherapeutic agents. Understanding the role of CSCs and tumor plasticity paves the way for more effective innovative therapies against melanoma. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Melanoma Immunotherapy)
Show Figures

Figure 1

23 pages, 2510 KiB  
Article
Variations in Circulating Tumor Microenvironment-Associated Proteins in Non-Muscle Invasive Bladder Cancer Induced by Mitomycin C Treatment
by Benito Blanco Gómez, Francisco Javier Casas-Nebra, Daniel Pérez-Fentes, Susana B. Bravo, Laura Rodríguez-Silva and Cristina Núñez
Int. J. Mol. Sci. 2025, 26(15), 7413; https://doi.org/10.3390/ijms26157413 - 1 Aug 2025
Viewed by 232
Abstract
Mitomycin C (MMC) is a widely employed chemotherapeutic agent, particularly in non-muscle invasive bladder cancer (NMIBC), where it functions by inducing DNA cross-linking and promoting tumor cell apoptosis. However, the tumor microenvironment (TME) significantly influences the therapeutic efficacy of MMC. Among the key [...] Read more.
Mitomycin C (MMC) is a widely employed chemotherapeutic agent, particularly in non-muscle invasive bladder cancer (NMIBC), where it functions by inducing DNA cross-linking and promoting tumor cell apoptosis. However, the tumor microenvironment (TME) significantly influences the therapeutic efficacy of MMC. Among the key regulators within the TME, the complement system and the coagulation pathway play a crucial role in modulating immune responses to cancer therapies, including MMC. This article explores the interaction between platinum nanoparticles (PtNPs) with human serum (HS) of NMIBC patients (T1 and Ta subtypes) at three different points: before the chemotherapy instillation of MMC (t0) and three (t3) and six months (t6) after the treatment with MMC. This novel nanoproteomic strategy allowed the identification of a TME proteomic signature associated with the response to MMC treatment. Importantly, two proteins involved in the immune response were found to be deregulated across all patients (T1 and Ta subtypes) during MMC treatment: prothrombin (F2) downregulated and complement component C7 (C7) upregulated. By understanding how these biomarker proteins interact with MMC treatment, novel therapeutic strategies can be developed to enhance treatment outcomes and overcome resistance in NMIBC. Full article
(This article belongs to the Special Issue Omics-Driven Unveiling of the Structure and Function of Nanoparticles)
Show Figures

Figure 1

37 pages, 1856 KiB  
Review
Current and Future Directions in Immunotherapy for Gastrointestinal Malignancies
by Catherine R. Lewis, Yazan Samhouri, Christopher Sherry, Neda Dadgar, Moses S. Raj and Patrick L. Wagner
Int. J. Transl. Med. 2025, 5(3), 33; https://doi.org/10.3390/ijtm5030033 - 31 Jul 2025
Viewed by 499
Abstract
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, [...] Read more.
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, or a combination of these treatments. Emerging modalities within immunotherapy are anticipated to extend the results with conventional therapy by stimulating the patient’s own intrinsic potential for tumor-specific immunologic rejection. Combination regimens of chemotherapy and tumor-infiltrating lymphocyte (TIL) therapy in advanced colorectal cancer and pancreatic cancer, autologous monocyte therapy in advanced gastric cancer, and CAR-T therapy trained against GI-selective tumor antigens such as carcinoembryonic antigen are currently being studied. Clinical trials are underway to study the combination of various chemotherapeutic agents along with immunotherapy in the management of cholangiocarcinoma, hepatocellular carcinoma, and esophageal cancer. Alternative therapies are needed based on the tumor immune microenvironment, which can lead to a personalized approach to treatment. In this review, we discuss the current status of various modalities of immunotherapy in common GI malignancies, along with their mechanisms of immune activation and cancer suppression. We will also discuss the use of immunotherapy in less common solid GI malignancies and touch on recent advancements and clinical trials. Full article
Show Figures

Graphical abstract

19 pages, 1716 KiB  
Review
Combination Therapy Using Phytochemicals and PARP Inhibitors in Hybrid Nanocarriers: An Optimistic Approach for the Management of Colon Cancer
by Mohammad Javed Qureshi, Gurpreet Kaur Narde, Alka Ahuja, Dhanalekshmi Unnikrishnan Meenakshi and Khalid Al Balushi
Int. J. Mol. Sci. 2025, 26(15), 7350; https://doi.org/10.3390/ijms26157350 - 30 Jul 2025
Viewed by 345
Abstract
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. [...] Read more.
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. Inhibitors of the PARP enzyme aid in chemotherapy, as shown by drug combinations such as Olaparib and Irinotecan in breast cancer treatment. However, the effect of Olaparib in colon cancer has not been studied extensively. Synthetic drugs have a significant limitation in cancer treatment due to drug resistance, leading to colon cancer relapse. Bioavailability of Olaparib and other PARP inhibitors is limited due to their hydrophobicity, which poses a significant challenge. These limitations and challenges can be addressed by encapsulating Olaparib in nanoparticles that could possibly increase the bioavailability of the drug at the site of action. New age nanoparticles, such as hybrid nanoparticles, provide superior quality in terms of design and circulatory time of the drug in the plasma. The side effects of Olaparib as a chemotherapeutic pave the way for exploring phytochemicals that may have similar effects. The combined impact of Olaparib and phytochemicals such as genistein, resveratrol and others in nano-encapsulated form can be explored in the treatment of colon cancer. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 365
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

24 pages, 10977 KiB  
Article
Potential of Pumpkin Pulp Carotenoid Extract in the Prevention of Doxorubicin-Induced Cardiotoxicity
by Milana Bosanac, Alena Stupar, Biljana Cvetković, Dejan Miljković, Milenko Čanković and Bojana Andrejić Višnjić
Pharmaceutics 2025, 17(8), 977; https://doi.org/10.3390/pharmaceutics17080977 - 28 Jul 2025
Viewed by 220
Abstract
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC [...] Read more.
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC prevention by affecting several pathways of DIC occurrence. Methods: Thirty Wistar rats were divided into six groups (control, NADES (C8:C10) solvent, pumpkin pulp extract, doxorubicin, NADES (C8:C10) solvent–doxorubicin, and pumpkin pulp extract–doxorubicin). During the experiment, parameters of general condition, body, and heart weight were observed. Heart function parameters were monitored by measuring the levels of serum NT-pro-BNP, CK-MB, and hsTnT. Tissue damage was evaluated by determining the doxorubicin damage score and the expression of anti-cardiac troponin I, anti-Nrf2, anti-Bcl-2, anti-caspase-3, anti-COX2, and anti-Ki67 antibodies. Results: Doxorubicin administration led to impaired general condition of animals and increased the levels of NT-proBNP, CK-MB, hsTnT, and myocardium tissue damage of medium grade. Its administration induced apoptosis (as evidenced by elevated Casp3), reduced antiapoptotic Bcl-2 and troponin I expression in cardiomyocytes. Reduced Nrf2 expression due to doxorubicin administration was restored when pumpkin pulp extract containing carotenoids was coadministered, which led to the normalization of Casp3, Bcl-2, and troponin I expression. Consequently, the general condition and body weight were better in animals treated with both doxorubicin and the other treatment compared to those treated with doxorubicin alone. Conclusions: The results of this study strongly suggest that pumpkin pulp extract containing carotenoids has a cardioprotective effect, possibly by regulating the Nrf2 pathway. Full article
(This article belongs to the Special Issue Plant Extracts and Their Biomedical Applications)
Show Figures

Figure 1

21 pages, 14138 KiB  
Case Report
Multi-Level Oncological Management of a Rare, Combined Mediastinal Tumor: A Case Report
by Vasileios Theocharidis, Thomas Rallis, Apostolos Gogakos, Dimitrios Paliouras, Achilleas Lazopoulos, Meropi Koutourini, Myrto Tzinevi, Aikaterini Vildiridi, Prokopios Dimopoulos, Dimitrios Kasarakis, Panagiotis Kousidis, Anastasia Nikolaidou, Paraskevas Vrochidis, Maria Mironidou-Tzouveleki and Nikolaos Barbetakis
Curr. Oncol. 2025, 32(8), 423; https://doi.org/10.3390/curroncol32080423 - 28 Jul 2025
Viewed by 476
Abstract
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with [...] Read more.
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with an equally detailed medical therapeutic plan (interventional or not) and determine the principal goals regarding efficient overall treatment in these patients. We report a case of a 24-year-old male patient with an incident-free prior medical history. An initial chest X-ray was performed after the patient reported short-term, consistent moderate chest pain symptomatology, early work fatigue, and shortness of breath. The following imaging procedures (chest CT, PET-CT) indicated the presence of an anterior mediastinal mass (meas. ~11 cm × 10 cm × 13 cm, SUV: 8.7), applying additional pressure upon both right heart chambers. The Alpha-Fetoprotein (aFP) blood levels had exceeded at least 50 times their normal range. Two consecutive diagnostic attempts with non-specific histological results, a negative-for-malignancy fine-needle aspiration biopsy (FNA-biopsy), and an additional tumor biopsy, performed via mini anterior (R) thoracotomy with “suspicious” cellular gatherings, were performed elsewhere. After admission to our department, an (R) Video-Assisted Thoracic Surgery (VATS) was performed, along with multiple tumor biopsies and moderate pleural effusion drainage. The tumor’s measurements had increased to DMax: 16 cm × 9 cm × 13 cm, with a severe degree of atelectasis of the Right Lower Lobe parenchyma (RLL) and a pressure-displacement effect upon the Superior Vena Cava (SVC) and the (R) heart sinus, based on data from the preoperative chest MRA. The histological report indicated elements of a combined, non-seminomatous germ-cell mediastinal tumor, posthuberal-type teratoma, and embryonal carcinoma. The imminent chemotherapeutic plan included a “BEP” (Bleomycin®/Cisplatin®/Etoposide®) scheme, which needed to be modified to a “VIP” (Cisplatin®/Etoposide®/Ifosfamide®) scheme, due to an acute pulmonary embolism incident. While the aFP blood levels declined, even reaching normal measurements, the tumor’s size continued to increase significantly (DMax: 28 cm × 25 cm × 13 cm), with severe localized pressure effects, rapid weight loss, and a progressively worsening clinical status. Thus, an emergency surgical intervention took place via median sternotomy, extended with a complementary “T-Shaped” mini anterior (R) thoracotomy. A large, approx. 4 Kg mediastinal tumor was extracted, with additional RML and RUL “en-bloc” segmentectomy and partial mediastinal pleura decortication. The following histological results, apart from verifying the already-known posthuberal-type teratoma, indicated additional scattered small lesions of combined high-grade rabdomyosarcoma, chondrosarcoma, and osteosarcoma, as well as numerous high-grade glioblastoma cellular gatherings. No visible findings of the previously discovered non-seminomatous germ-cell and embryonal carcinoma elements were found. The patient’s postoperative status progressively improved, allowing therapeutic management to continue with six “TIP” (Cisplatin®/Paclitaxel®/Ifosfamide®) sessions, currently under his regular “follow-up” from the oncological team. This report underlines the importance of early, accurate histological identification, combined with any necessary surgical intervention, diagnostic or therapeutic, as well as the appliance of any subsequent multimodality management plan. The diversity of mediastinal tumors, especially for young patients, leaves no place for complacency. Such rare examples may manifest, with equivalent, unpredictable evolution, obliging clinical physicians to stay constantly alert and not take anything for granted. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Graphical abstract

16 pages, 3919 KiB  
Article
Autophagy and PXR Crosstalk in the Regulation of Cancer Drug Metabolism and Resistance According to Gene Mutational Status in Colorectal Cancer
by Evangelos Koustas, Panagiotis Sarantis, Eleni-Myrto Trifylli, Eleftheria Dikoglou-Tzanetatou, Evangelia Ioakeimidou, Ioanna A. Anastasiou, Michalis V. Karamouzis and Stamatios Theocharis
Genes 2025, 16(8), 892; https://doi.org/10.3390/genes16080892 - 28 Jul 2025
Viewed by 302
Abstract
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between [...] Read more.
Background and Objectives: Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between drug resistance and the pregnane X receptor (PXR), which influences the metabolism and the transport of chemotherapeutic agents. Likewise, autophagy is also a well-established mechanism that contributes to chemotherapy resistance, and it is closely tied to tumor progression. This pre-clinical study aims to investigate the role of mtKRAS-dependent autophagy with PXR expression after treatment with Irinotecan in colorectal cancer. Methods: CRC lines were treated with specific inhibitors, such as 3-methyladeninee, hydroxychloroquine PI-103, and irinotecan hydrochloride, and subjected to various assays, including MTT for cell viability, Western blot for protein expression, siRNA-mediated PXR knock-out, and confocal microscopy for autophagic vacuole visualization. Protein quantification, gene knockdown, and subcellular localization studies were performed under standardized conditions to investigate treatment effects on autophagy and apoptosis pathways. Conclusions: Our experiments showed that PXR knockdown does not alter autophagy levels following Irinotecan treatment, but it promotes apoptotic cell death despite elevated autophagy. Moreover, late-stage autophagy inhibition reduces PXR expression, whereas induction through PI3K/AKT/mTOR inhibition leads to increased expression of PXR. Our experiments uncover a mechanism by which autophagy facilitates the nuclear translocation of the PXR, thereby promoting resistance to Irinotecan across multiple cell lines. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1388 KiB  
Article
Indazole Derivatives Against Murine Cutaneous Leishmaniasis
by Niurka Mollineda-Diogo, Yunierkis Pérez-Castillo, Sergio Sifontes-Rodríguez, Osmani Marrero-Chang, Alfredo Meneses-Marcel, Alma Reyna Escalona-Montaño, María Magdalena Aguirre-García, Teresa Espinosa-Buitrago, Yeny Morales-Moreno and Vicente Arán-Redó
Pharmaceuticals 2025, 18(8), 1107; https://doi.org/10.3390/ph18081107 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side [...] Read more.
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side effects, remains a priority for the scientific community in this field of research. In previous investigations, 3-alkoxy-1-benzyl-5-nitroindazole derivatives showed remarkable in vitro results against Leishmania species, and predictions of absorption, distribution, metabolism, excretion, and toxicity properties, as well as pharmacological scores, of the compounds classified as active were superior to those of amphotericin B, indicating their potential as candidates for in vivo studies. Therefore, the aim of the present study was to evaluate the in vivo antileishmanial activity of the indazole derivatives NV6 and NV16. Methods: The compounds were administered intralesionally at concentrations of 10 and 5 mg/kg in a BALB/c mouse model of cutaneous leishmaniasis caused by Leishmania amazonensis. To evaluate the efficacy of the compounds, indicators such as lesion size, ulcer area, lesion weight, and parasitic load were determined. Amphotericin B was used as a positive control. Results: The compound NV6 showed leishmanicidal activity comparable to that observed with amphotericin B, with a significant reduction in lesion development and parasite load, while NV16 caused a reduction in ulcer area. Conclusions: These results provide strong evidence for the antileishmanial activity of NV6 and support future studies to improve its pharmacokinetic profile, as well as the investigation of combination therapies with other chemotherapeutic agents currently in use. Full article
Show Figures

Graphical abstract

Back to TopTop