Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors
Abstract
1. Introduction
2. Results
2.1. HIF1α and Angiogenesis
2.2. HIF1α and Hypoxia
2.3. VEGF and Hypoxia
2.4. Other Factors in Hypoxia
2.5. Therapeutic Protocols
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV2 | Adeno-Associated Virus 2 |
Bev | Bevacizumab |
CA-IX | Carbonic Anhydrase-IX |
CMet | Mesenchymal–Epithelial Transition Factor |
COX-1 | Cyclooxygenase-1 |
COX-2 | Cyclooxygenase-2 |
CSC | Cancer Stem Cell |
CSCs | Cancer Stem Cells |
CTCs | Circulating Tumor Cells |
CYLD | Cylindromatosis |
ECM | Extracellular Matrix |
EGFR | Epidermal Growth Factor Receptor |
GBM | Glioblastoma |
GVCs | Glioma-Associated Vascular Cells |
HIF1α | Hypoxia-Inducible Factor 1 Alpha |
HIG2 | Hypoxia-Inducible Gene 2 |
LDHA | Lactate Dehydrogenase A |
MCT | Monocarboxylate Transporter |
MIF | Macrophage Migration Inhibitory Factor |
NSCLC | Non-Small Cell Lung Cancer |
PDGFR | Platelet-Derived Growth Factor Receptor |
SCLC | Small Cell Lung Cancer |
TMZ | Temozolomide |
VEGF | Vascular Endothelial Growth Factor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
VHL | Von Hippel–Lindau |
References
- Gomez, D.; Feng, J.J.; Cheok, S.; Shah, I.; Dicharry, H.; Cote, D.J.; Briggs, R.G.; Guerra, G.A.; Peterson, R.; Salhia, B.; et al. Incidence of brain metastasis according to patient race and primary cancer origin: A systematic review. J. Neuro-Oncol. 2024, 169, 457–467. [Google Scholar] [CrossRef]
- Nathoo, N.; Chahlavi, A.; Barnett, G.H.; Toms, S.A. Pathobiology of brain metastases: Table 1. J. Clin. Pathol. 2005, 58, 237–242. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Ilhan-Mutlu, A.; Dinhof, C.; Magerle, M.; Hackl, M.; Widhalm, G.; Hainfellner, J.A.; Dieckmann, K.; Pichler, J.; Hutterer, M.; et al. Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: Analysis of 639 cases. Neuropathol. Appl. Neurobiol. 2014, 41, e41–e55. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, J.; Wang, Y.; Chen, L.; Peng, L.; Bin, Y.; Ding, P.; Zhang, R.; Tong, F.; Dong, X. Blocking the MIF-CD74 axis augments radiotherapy efficacy for brain metastasis in NSCLC via synergistically promoting microglia M1 polarization. J. Exp. Clin. Cancer Res. 2024, 43, 128. [Google Scholar] [CrossRef] [PubMed]
- Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.F.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 2010, 16, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, W.S.; Ansorge, O.; Sibson, N.; Muschel, R. The vascular basement membrane as “Soil” in Brain metastasis. PLoS ONE 2009, 4, e5857. [Google Scholar] [CrossRef]
- Fidler, I.J.; Yano, S.; Zhang, R.-D.; Fujimaki, T.; Bucana, C.D. The seed and soil hypothesis: Vascularisation and brain metastases. Lancet Oncol. 2002, 3, 53–57. [Google Scholar] [CrossRef]
- Ruan, K.; Song, G.; Ouyang, G. Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 2009, 107, 1053–1062. [Google Scholar] [CrossRef]
- da Ponte, K.F.; Berro, D.H.; Collet, S.; Constans, J.-M.; Emery, E.; Valable, S.; Guillamo, J.-S. In vivo relationship between hypoxia and angiogenesis in human glioblastoma: A multimodal imaging study. J. Nucl. Med. 2017, 58, 1574–1579. [Google Scholar] [CrossRef]
- Magar, A.G.; Morya, V.K.; Kwak, M.K.; Oh, J.U.; Noh, K.C. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: An update. Int. J. Mol. Sci. 2024, 25, 3313. [Google Scholar] [CrossRef]
- Shin, D.H.; Jo, J.Y.; Kim, S.H.; Choi, M.; Han, C.; Choi, B.K.; Kim, S.S. Midkine is a potential therapeutic target of tumorigenesis, angiogenesis, and metastasis in non-small cell lung cancer. Cancers 2020, 12, 2402. [Google Scholar] [CrossRef]
- Zhong, H.; de Marzo, A.M.; Laughner, E.; Lim, M.; Hilton, D.A.; Zagzag, D.; Buechler, P.; Isaacs, W.B.; Semenza, G.L.; Simons, J.W. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases1. Cancer Res. 1999, 59, 5830–5835. [Google Scholar]
- Lee, G.-W.; Go, S.I.; Cho, Y.J.; Jeong, Y.Y.; Kim, H.-C.; Lee, J.D.; Hwang, Y.S.; Ko, G.H.; Lee, J.H.; Kim, D.C.; et al. Hypoxia-inducible factor-1α and excision repair cross-complementing 1 in patients with small cell lung cancer who received front-line platinum-based chemotherapy: A retrospective study. J. Thorac. Oncol. 2012, 7, 528–534. [Google Scholar] [CrossRef]
- Ebright, R.Y.; Zachariah, M.A.; Micalizzi, D.S.; Wittner, B.S.; Niederhoffer, K.L.; Nieman, L.T.; Chirn, B.; Wiley, D.F.; Wesley, B.; Shaw, B.; et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat. Commun. 2020, 11, 6311. [Google Scholar] [CrossRef] [PubMed]
- Peleli, M.; Moustakas, A.; Papapetropoulos, A.A. endothelial-tumor cell interaction in brain and cns malignancies. Int. J. Mol. Sci. 2020, 21, 7371. [Google Scholar] [CrossRef] [PubMed]
- Tuettenberg, J.; Grobholz, R.; Korn, T.; Wenz, F.; Erber, R.; Vajkoczy, P. Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J. Cancer Res. Clin. Oncol. 2005, 131, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Y.; Wang, L.; Yang, L.; Zou, L.; Gao, F. Adeno-associated virus 2 mediated gene transfer of vascular endothelial growth factor Trap: A new treatment option for glioma. Cancer Biol. Ther. 2019, 20, 65–72. [Google Scholar] [CrossRef]
- Guan, Z.; Lan, H.; Cai, X.; Zhang, Y.; Liang, A.; Li, J. Blood–brain barrier, cell junctions, and tumor microenvironment in brain metastases, the biological prospects and dilemma in therapies. Front. Cell Dev. Biol. 2021, 9, 722917. [Google Scholar] [CrossRef]
- Neth, B.J.; Webb, M.J.; White, J.; Uhm, J.H.; Pichurin, P.N.; Sener, U. Belzutifan in adults with VHL-associated central nervous system hemangioblastoma: A single-center experience. J. Neuro-Oncol. 2023, 164, 239–247. [Google Scholar] [CrossRef]
- Corroyer-Dulmont, A.; Valable, S.; Fantin, J.; Chatre, L.; Toutain, J.; Teulier, S.; Bazille, C.; Letissier, E.; Levallet, J.; Divoux, D.; et al. Multimodal evaluation of hypoxia in brain metastases of lung cancer and interest of hypoxia image-guided radiotherapy. Sci. Rep. 2021, 11, 11239. [Google Scholar] [CrossRef]
- Sonveaux, P.; Vegran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 2008, 118, 3930–3942. [Google Scholar] [CrossRef]
- Heddleston, J.M.; Li, Z.; Lathia, J.D.; Bao, S.; Hjelmeland, A.B.; Rich, J.N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 2010, 102, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Spanberger, T.; Berghoff, A.S.; Dinhof, C.; Ilhan-Mutlu, A.; Magerle, M.; Hutterer, M.; Pichler, J.; Wöhrer, A.; Hackl, M.; Widhalm, G.; et al. Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin. Exp. Metastasis 2013, 30, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Ilhan-Mutlu, A.; Wöhrer, A.; Hackl, M.; Widhalm, G.; Hainfellner, J.A.; Dieckmann, K.; Melchardt, T.; Dome, B.; Heinzl, H.; et al. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases. Strahlenther. Onkol. 2014, 190, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.S.; Huang, S.; Lu, W.; Lev, D.C.; Price, J.E. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 2004, 21, 107–118. [Google Scholar] [CrossRef]
- Ban, H.S.; Uno, M.; Nakamura, H. Suppression of hypoxia-induced HIF-1α accumulation by VEGFR inhibitors: Different profiles of AAL993 versus SU5416 and KRN633. Cancer Lett. 2010, 296, 17–26. [Google Scholar] [CrossRef]
- Crowder, S.W.; Balikov, D.A.; Hwang, Y.-S.; Sung, H.-J. Cancer stem cells under hypoxia as a chemoresistance factor in the breast and brain. Curr. Pathobiol. Rep. 2014, 2, 33–40. [Google Scholar] [CrossRef]
- Oronsky, B.; Reid, T.; Cabrales, P. Vascular priming with RRx-001 to increase the uptake and accumulation of temozolomide and irinotecan in orthotopically implanted gliomas. J. Drug Target. 2021, 29, 998–1003. [Google Scholar] [CrossRef]
- Gately, S.; Kerbel, R. Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog. Exp. Tumor Res. 2003, 37, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, A.; Mesteri, I.; Berghoff, A.S.; Haitel, A.; Schmidinger, M.; Preusser, M.; Birner, P. Evaluation of tyrosine kinase receptors in brain metastases of clear cell renal cell carcinoma reveals cMet as a negative prognostic factor. Histopathology 2015, 67, 799–805. [Google Scholar] [CrossRef]
- Delaney, L.J.; Ciraku, L.; Oeffinger, B.E.; Wessner, C.E.; Liu, J.; Li, J.B.; Nam, K.; Forsberg, F.; Leeper, D.B.; O’KAne, P.; et al. Breast cancer brain metastasis response to radiation after microbubble oxygen delivery in a murine model. J. Ultrasound Med. 2019, 38, 3221–3228. [Google Scholar] [CrossRef]
- Brem, S.; Tsanaclis, A.M.C.; Gately, S.; Gross, J.L.; Herblin, W.F. Immunolocalization of basic fibroblast growth factor to the micro vasculature of human brain tumors. Cancer 1992, 70, 2673–2680. [Google Scholar] [CrossRef]
- Browder, T.; Butterfield, C.E.; Kräling, B.M.; Shi, B.; Marshall, B.; O’Reilly, M.S.; Folkman, J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000, 60, 1878–1886. [Google Scholar]
- Arrieta, O.; Hernández-Pedro, N.; Maldonado, F.; Ramos-Ramírez, M.; Yamamoto-Ramos, M.; López-Macías, D.; Lozano, F.; Zatarain-Barrón, Z.L.; Turcott, J.G.; Barrios-Bernal, P.; et al. Nitroglycerin plus whole intracranial radiation therapy for brain metastases in patients with non-small cell lung cancer: A randomized, open-label, phase 2 clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 592–607. [Google Scholar] [CrossRef]
Grouping | Relation | Reference No. |
---|---|---|
Hypoxia and HIF1α Signaling | Includes sources that focus on the biological effects and molecular mechanisms related to low-oxygen conditions (hypoxia) in tumors and the central transcription factor, Hypoxia-Inducible Factor 1α (HIF1α). These sources discuss HIF1α’s structure, regulation, accumulation, and overexpression in various cancers and metastases and its role in cancer metabolism, progression, and metastasis. Methods for studying or measuring tumor hypoxia are also included. | [10,14,23] |
Angiogenesis and Tumor Vasculature | Includes sources focusing on the formation of new blood vessels (angiogenesis), key signaling molecules that stimulate this process, like Vascular Endothelial Growth Factor (VEGF), and the cells that form these vessels. The role of angiogenesis in tumor growth and metastasis is included, as well as methods for evaluating the tumor vasculature. The group also covers vascular patterns in specific tumors, like gliomas, and interactions between vascular cells and tumor cells. | [8,9,12,20,22,25,26,27] |
Molecular Targets and Therapeutic Strategies | Includes sources discussing specific molecules or pathways that are explored as potential targets for cancer treatment and the different therapeutic approaches discussed in the sources. Examples include targeted inhibitors against Vascular Endothelial Growth Factor Receptor (VEGFR), Epidermal Growth Factor Receptor (EGFR), Platelet-Derived Growth Factor Receptor (PDGFR), cMet, MIF, Cyclooxygenase-2 (COX-2), and Monocarboxylate Transporters (MCTs). Therapeutic approaches mentioned include antiangiogenic agents (VEGF-Trap, Bevacizumab, FGF traps), chemotherapy (Temozolomide and Irinotecan), radiation therapy, and strategies to improve drug delivery. | [15,16,17,18,28,29] |
Tumor Microenvironment and Cellular Interactions | Includes sources focusing on the complex ecosystem within and surrounding the tumor, involving various cell types and their interactions. It includes discussions on the tumor microenvironment, extracellular matrix (ECM), cancer stem cells (CSCs) and circulating tumor cells (CTCs), and the roles and interactions of different stromal cell types, such as endothelial cells, pericytes, astrocytes, microglia and macrophages, and glioma-associated vascular cells (GVCs). Specific interaction mechanisms, such as gap junctions, are also included. | [4,11,21,24,27,29,30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colby, L.; Preskitt, C.; Ho, J.S.; Balsara, K.; Wu, D. Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors. Int. J. Mol. Sci. 2025, 26, 7541. https://doi.org/10.3390/ijms26157541
Colby L, Preskitt C, Ho JS, Balsara K, Wu D. Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors. International Journal of Molecular Sciences. 2025; 26(15):7541. https://doi.org/10.3390/ijms26157541
Chicago/Turabian StyleColby, Lara, Caroline Preskitt, Jennifer S. Ho, Karl Balsara, and Dee Wu. 2025. "Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors" International Journal of Molecular Sciences 26, no. 15: 7541. https://doi.org/10.3390/ijms26157541
APA StyleColby, L., Preskitt, C., Ho, J. S., Balsara, K., & Wu, D. (2025). Brain Metastasis: A Literary Review of the Possible Relationship Between Hypoxia and Angiogenesis in the Growth of Metastatic Brain Tumors. International Journal of Molecular Sciences, 26(15), 7541. https://doi.org/10.3390/ijms26157541