Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,539)

Search Parameters:
Keywords = chemical-thermal properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1615 KiB  
Article
Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties
by Aleksandra Nešić, Rebeka Lorber, Silvester Bolka, Blaž Nardin and Branka Pilić
Polymers 2025, 17(16), 2164; https://doi.org/10.3390/polym17162164 (registering DOI) - 8 Aug 2025
Abstract
Poly(lactide) (PLA) is the most versatile biopolymer with few possible end-of-life scenarios, like recycling, biodegradation/composting, and incineration. Biodegradation occurs under strictly defined conditions, and ultimately, PLA is landfilled, where it behaves like conventional plastics. To completely utilize the potential of PLA, it is [...] Read more.
Poly(lactide) (PLA) is the most versatile biopolymer with few possible end-of-life scenarios, like recycling, biodegradation/composting, and incineration. Biodegradation occurs under strictly defined conditions, and ultimately, PLA is landfilled, where it behaves like conventional plastics. To completely utilize the potential of PLA, it is necessary to increase the recycling and upcycling rates. In this work, the influence of 10 cycles of reprocessing PLA pre-consumer industrial waste on the material’s properties was examined. The mechanical milling of the material was followed by injection molding, and after each cycle, mechanical, thermal, chemical, and optical properties were studied. Between the cycles, no virgin PLA or any additives were added to enhance the properties. Results showed a slight decrease in molecular weight, while the thermal properties remained unchanged compared to the starting material. Full article
Show Figures

Figure 1

21 pages, 1609 KiB  
Article
Exploring Residual Clays for Low-Impact Ceramics: Insights from a Portuguese Ceramic Region
by Carla Candeias, Sónia Novo and Fernando Rocha
Appl. Sci. 2025, 15(15), 8761; https://doi.org/10.3390/app15158761 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A [...] Read more.
This study investigates the potential of residual clays from a traditional ceramic-producing region in southern Portugal as raw materials for red ceramic applications. This work aims to support more sustainable ceramic practices through the local valorization of naturally available, underutilized clay resources. A multidisciplinary approach was employed to characterize clays, integrating mineralogical (XRD), chemical (XRF), granulometric, and thermal analyses (TGA/DTA/TD), as well as technological tests on plasticity, extrusion moisture, shrinkage, and flexural strength. These assessments were designed to capture both the intrinsic properties of the clays and their behavior across key ceramic processing stages, such as shaping, drying, and firing. The results revealed a broad diversity in mineral composition, particularly in the proportions of kaolinite, smectite, and illite, which strongly influenced plasticity, water demand, and thermal stability. Clays with higher fine fractions and smectitic content exhibited excellent plasticity and workability, though with increased sensitivity to drying and firing conditions. Others, with coarser textures and illitic or feldspathic composition, demonstrated improved dimensional stability and lower shrinkage. Thermal analyses confirmed expected dehydroxylation and sintering behavior, with the formation of mullite and spinel-type phases contributing to densification and strength in fired bodies. This study highlights that residual clays from varied geological settings can offer distinct advantages when matched appropriately to ceramic product requirements. Some materials showed strong potential for direct application in structural ceramics, while others may serve as additives or tempering agents in formulations. These findings reinforce the value of integrated characterization for optimizing raw material use and support a more circular, resource-conscious approach to ceramic production. Full article
38 pages, 2180 KiB  
Review
Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review
by Abdulalim Ibrahim, Marc Mulamba Tshibangu, Christophe Coquelet and Fabienne Espitalier
ChemEngineering 2025, 9(4), 84; https://doi.org/10.3390/chemengineering9040084 - 6 Aug 2025
Abstract
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in [...] Read more.
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in TDESs offers opportunities to further optimize their performance. This review aims to evaluate the physicochemical properties of TDESs and highlight their potential applications in sustainable industrial processes compared to BDESs. A comprehensive analysis of the existing literature was conducted, focusing on TDES properties, such as phase behavior, density, viscosity, pH, conductivity, and the effect of water, along with their applications in various fields. TDESs demonstrated superior physicochemical characteristics compared to BDESs, including improved solvation and thermal stability. Their applications in biomass conversion, CO2 capture, heavy oil upgrading, refrigeration gases, and as solvents/catalysts in organic reactions show significant promise for enhancing process efficiency and sustainability. Despite their advantages, TDESs face challenges including limited predictive models, potential instability under certain conditions, and scalability hurdles. Overall, TDESs offer significant potential for advancing sustainable and efficient chemical processes for industrial applications. Full article
Show Figures

Figure 1

22 pages, 5509 KiB  
Article
Kinetic Analysis of Thermal Degradation of Styrene–Butadiene Rubber Compounds Under Different Aging Conditions
by Imen Hamouda, Masoud Tayefi, Mostafa Eesaee, Meysam Hassanipour and Phuong Nguyen-Tri
J. Compos. Sci. 2025, 9(8), 420; https://doi.org/10.3390/jcs9080420 - 6 Aug 2025
Abstract
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation [...] Read more.
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation was analyzed through thermogravimetric analysis (TGA), which examined weight loss as a function of temperature and time at different heating rates. Results showed that the onset temperature and peak position in the 457 °C to 483 °C range remained stable. The activation energy (Ea) was determined using the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman methods, with the original unaged sample’s (OUS) Ea averaging 203.7 kJ/mol, decreasing to 163.47 kJ/mol in the laboratory-stored sample (LSS), and increasing to 224.18 kJ/mol in the operationally aged sample (OAS). The Toop equation was applied to estimate the thermal degradation lifetime at a 50% conversion rate. Since the material had been exposed to electricity, the evolution of electrical conductivity was studied and found to have remained stable after storage at around 0.070 S/cm. However, after operational aging, it showed a considerable increase in conductivity, to 0.321 S/cm. Scanning Electron Microscopy (SEM) was employed to analyze microstructural degradation and chemical changes, providing insights into the impact of aging on thermal stability and electrical properties. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
Performance Analysis of New Deuterium Tracer for Online Oil Consumption Measurements
by Francesco Marzemin, Martin Vareka, Kevin Gschiel, Bernhard Rossegger, Peter Grabner, Michael Engelmayer and Nicole Wermuth
Lubricants 2025, 13(8), 351; https://doi.org/10.3390/lubricants13080351 - 5 Aug 2025
Abstract
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, [...] Read more.
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, accurate, and fast lubricating oil consumption measurements. Previously performed measurements have shown that the use of poly-deuterated poly-alpha olefins has minimal impact on lubricating oil properties, except for a slight drop in oil viscosity. To further reduce the impact on lubricating oil characteristics, a new base oil for the synthesis of a poly-deuterated tracer is introduced, and its influence on the lubricating oil’s chemical, tribological, and rheological properties is analyzed. Furthermore, the influence of the tracer addition on the preignition tendencies of the fully formulated oil is also examined. Based on the analyses, no relevant changes in the lubricating oil properties, such as viscosity, density, and thermal degradation behavior, can be observed. Additionally, the deuterium tracer does not negatively influence combustion anomalies, thus reducing preignition tendencies. These results establish the method’s compatibility with new-generation engines, especially hydrogen-fueled internal combustion engines. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 229
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 - 2 Aug 2025
Viewed by 245
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Graphical abstract

23 pages, 8079 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 - 2 Aug 2025
Viewed by 140
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
Show Figures

Figure 1

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 - 1 Aug 2025
Viewed by 237
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 227
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 - 31 Jul 2025
Viewed by 149
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
22 pages, 2554 KiB  
Article
Modeling the Higher Heating Value of Spanish Biomass via Neural Networks and Analytical Equations
by Anbarasan Jayapal, Fernando Ordonez Morales, Muhammad Ishtiaq, Se Yun Kim and Nagireddy Gari Subba Reddy
Energies 2025, 18(15), 4067; https://doi.org/10.3390/en18154067 - 31 Jul 2025
Viewed by 138
Abstract
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with [...] Read more.
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with learning rate 0.3 and momentum 0.4) was calibrated on 99 diverse Spanish biomass samples (inputs: moisture, ash, volatile matter, fixed carbon, C, H, O, N, S). The optimized ANN achieved strong predictive accuracy (validation R2 ≈ 0.81; mean squared error ≈ 1.33 MJ/kg; MAE ≈ 0.77 MJ/kg), representing a substantial improvement over 54 analytical models despite the known complexity and variability of biomass composition. Importantly, in direct comparisons it significantly outperformed 54 published analytical HHV correlations—the ANN achieved substantially higher R2 and lower prediction error than any fixed-form formula in the literature. A sensitivity analysis confirmed chemically intuitive trends (higher C/H/FC increase HHV; higher moisture/ash/O reduce it), indicating the model learned meaningful fuel-property relationships. The ANN thus provided a computationally efficient and robust tool for rapid, accurate HHV estimation from compositional data. Future work will expand the dataset, incorporate thermal pretreatment effects, and integrate the model into a user-friendly decision-support platform for bioenergy applications. Full article
Show Figures

Figure 1

12 pages, 796 KiB  
Article
Thermoxidation Stability of Gear Oils for Electric Vehicles
by Agnieszka Skibińska, Ewa Barglik, Wojciech Krasodomski, Magdalena Żółty and Krzysztof Biernat
Lubricants 2025, 13(8), 337; https://doi.org/10.3390/lubricants13080337 - 31 Jul 2025
Viewed by 181
Abstract
This article presents studies on the degradation susceptibility of two commercially available gear oils used in electric passenger vehicle transmissions. A series of aging tests were conducted using selected research methods. Due to the lack of a recommended methodology for testing the thermal [...] Read more.
This article presents studies on the degradation susceptibility of two commercially available gear oils used in electric passenger vehicle transmissions. A series of aging tests were conducted using selected research methods. Due to the lack of a recommended methodology for testing the thermal oxidation stability of such oils, standardized methods were applied: ASTM D5704, ASTM D8206, ASTM D2272, PN-EN 16091, and PN-C-04080. To determine the degree of degradation, changes in physicochemical parameters (kinematic viscosity at 40 °C and 100 °C and acid number) and changes in the chemical character of oil components, based on FTIR spectra, were evaluated. Significant changes in properties were found in the tested oils, which were confirmed by spectral analysis. It was found that all the mentioned methods for assessing thermal oxidation stability are suitable for evaluating such oils, but they differ in the aggressiveness of the method towards the tested oil. These methods can be ranked according to their impact on the degradation of the tested oil. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Advances in the Tribological Performance of Graphene Oxide and Its Composites
by Mayur B. Wakchaure and Pradeep L. Menezes
Materials 2025, 18(15), 3587; https://doi.org/10.3390/ma18153587 - 30 Jul 2025
Viewed by 313
Abstract
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The [...] Read more.
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. Full article
(This article belongs to the Special Issue Tribology in Advanced Materials)
Show Figures

Figure 1

19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 247
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

Back to TopTop