Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties
Abstract
1. Introduction
- Blending recycled PLA with virgin material (typically 30–70%) maintains mechanical integrity while enhancing sustainability [7].
2. Materials and Methods
2.1. Processing of the Material
2.2. Characterization of the Material
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLA | Poly(lactide) |
EoL | End-of-Life |
MFI | Melt flow index |
DSC | Differential scanning calorimetry |
Tc | Crystallization temperature |
ΔHc | Crystallization enthalpy |
Tm | Melting temperature |
ΔHm | Melting enthalpy |
Xc | Relative crystallinity |
ΔHf | Metling enthalpy of 100% crystalline PLA |
TGA | Thermo-gravimetric analysis |
DMA | Dynamic-mechanical analysis |
FTIR | Infrared spectroscopy with Fourrier transformation |
XRD | X-ray diffraction |
Td1 | Degradation temperature |
Tg | Glass transition temperature |
References
- Bioplastics Market Development Update 2024. Available online: https://www.european-bioplastics.org/market/ (accessed on 8 July 2025.).
- Farah, S.; Anderson, D.G. Langer Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Jem, K.J.; Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Poly. Res. 2020, 3, 60–70. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental sustainability of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef] [PubMed]
- Hajilou, N.; Mostafayi, S.S.; Yarin, A.L.; Shokuhfar, T. A Comparative Review on Biodegradation of Poly(Lactic Acid) in Soil, Compost, Water, and Wastewater Environments: Incorporating Mathematical Modeling Perspectives. Appl. Chem. 2025, 5, 1. [Google Scholar] [CrossRef]
- Maragkaki, A.; Malliaros, N.G.; Sampathianakis, I.; Lolos, T.; Tsompanidis, C.; Manios, E. Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting. Sustainability 2023, 15, 15963. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Pramanik, A.; John, M.; Biswas, W.K. Recycling Post-Consumed Polylactic Acid Waste Through Three-Dimensional Printing: Technical vs. Resource Efficiency Benefits. Sustainability 2025, 17, 2484. [Google Scholar] [CrossRef]
- Aryan, V.; Maga, D.; Majgaonkar, P.; Hanich, R. Valorisation of polylactic acid (PLA) waste: A comparative life cycle assessment of various solvent-based chemical recycling technologies. Resour. Conserv. Recycl. 2021, 172, 105670. [Google Scholar] [CrossRef]
- de Andrade, M.F.; Souza, P.M.S.; Cavalett, O.; Morales, A.R. Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J. Polym. Environ. 2016, 24, 372–384. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Lorenzo, V.; de la Orden, M.U.; Martínez-Urreaga, J. Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Poly. Deg. Stab. 2016, 133, 339–348. [Google Scholar] [CrossRef]
- Ramos-Hernández, T.; Robledo-Ortíz, J.R.; González-López, M.E.; del Campo, A.S.M.; González-Núñez, R.; Rodrigue, D.; Fonseca, A.A.P. Mechanical recycling of PLA: Effect of weathering, extrusion cycles, and chain extender. J. Appl. Polym. Sci. 2023, 140, e53759. [Google Scholar] [CrossRef]
- McKeown, P.; Jones, M.D. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020, 1, 1–22. [Google Scholar] [CrossRef]
- Piemonte, V.; Sabatini, S.; Gironi, F. Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? J. Polym. Environ. 2013, 21, 640–647. [Google Scholar] [CrossRef]
- Danyluk, C.; Erickson, R.; Burrows, S.; Auras, R. Industrial Composting of Poly(Lactic Acid) Bottles. J. Test. Eval. 2010, 38, 717–723. [Google Scholar] [CrossRef]
- Musioł, M.; Sikorska, W.; Adamus, G.; Janeczek, H.; Richert, J.; Malinowski, R.; Jiang, G.; Kowalczuk, M. Forensic engineering of advanced polymeric materials. Part III—Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manag. 2016, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wei, S.; Tan, H.; Huang, Y.; Zhang, Y. Progress in upcycling polylactic acid waste as an alternative carbon source: A review. Chem. Eng. J. 2022, 446, 136881. [Google Scholar] [CrossRef]
- Maga, D.; Hiebel, M.; Thonemann, N. Life cycle assessment of recycling options for polylactic acid. Resour. Conserv. Recycl. 2019, 149, 86–96. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Pramanik, A.; John, M.; Biswas, W.K. Potential of recycled PLA in 3D printing: A review. Sustain. Manuf. Serv. Econ. 2024, 3, 100020. [Google Scholar] [CrossRef]
- Finnerty, J.; Rowe, S.; Howard, T.; Connolly, S.; Doran, C.; Devine, D.M.; Gately, N.M.; Chyzna, V.; Portela, A.; Bezerra, G.S.N.; et al. Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites. J. Compos. Sci. 2023, 7, 141. [Google Scholar] [CrossRef]
- Agüero, A.; Morcillo, M.d.C.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Lascano, D.; Torres-Giner, S.; Fenollar, O. Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers 2019, 11, 1908. [Google Scholar] [CrossRef]
- Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym. Degrad. Stab. 2008, 93, 321–328. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Ortega, E.; Solvoll, A.M.; Lorenzo, V.; De La Orden, M.U.; Martínez Urreaga, J. Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites. J. Polym. Environ. 2018, 26, 2142–2152. [Google Scholar] [CrossRef]
- Scaffaro, R.; Sutera, F.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. Structure–Properties Relationships in Melt Reprocessed PLA/Hydrotalcites Nanocomposites. Express Polym. Lett. 2017, 11, 555–564. [Google Scholar] [CrossRef]
- Hidalgo-Carvajal, D.; Muñoz, Á.H.; Garrido-González, J.J.; Carrasco-Gallego, R.; Alcázar Montero, V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers 2023, 15, 3651. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, Y.; Kim, I.; Hwang, K.; Kim, N. Thermal and Mechanical Degradation of Recycled Polylactic Acid Filaments for Three-Dimensional Printing Applications. Polymers 2022, 14, 5385. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of Multi-Extruded Poly(lactic Acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Fiorio, R.; Barone, A.C.; De Cillis, F.; Palumbo, M.; Righetti, M.C. Stabilization of recycled polylactic acid with chain extenders: Effect of reprocessing cycles. Polymers 2022, 14, 3522. [Google Scholar]
- Beltrán, F.R.; Infante de la Orden, U.; Urreaga, M. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 2019, 219, 46–56. [Google Scholar] [CrossRef]
- ISO 1133-1:2022; Plastics—Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics—Part 1: Standard method. ISO Copyright Office: Vernier, Switzerland, 2022.
- ISO 179-2:2020; Plastics—Determination of Charpy impact properties—Part 2: Instrumented impact test. ISO Copyright Office: Vernier, Switzerland, 2020.
- ISO 178:2019; Plastics—Determination of flexural properties. ISO copyright office: Vernier, Switzerland, 2019.
- ISO 527-1:2019; Plastics—Determination of tensile properties—Part 1: General principles. ISO Copyright Office: Vernier, Switzerland, 2019.
- Sambudi, N.S.; Lin, W.Y.; Harun, N.Y.; Mutiari, D. Modification of Poly(lactic acid) with Orange Peel Powder as Biodegradable Composite. Polymers 2022, 14, 4126. [Google Scholar] [CrossRef]
- Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9, 18. [Google Scholar] [CrossRef]
Sample | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | Xc (%) | Td1 (°C) |
---|---|---|---|---|---|---|---|
Milled PLA | 59.5 | 113.1 | 17.6 | 148.9 | 26.0 | 9.0 | 370.1 |
Extruded PLA | 59.3 | 114.4 | 22.2 | 148.8 | 23.2 | 1.1 | 369.0 |
PLA1 | 59.2 | 114.4 | 23.2 | 148.7 | 24.1 | 1.0 | 368.7 |
PLA2 | 59.9 | 115.2 | 16.8 | 149.7 | 28.8 | 12.9 | 368.5 |
PLA3 | 59.7 | 115.2 | 16.4 | 149.8 | 28.7 | 13.2 | 368.1 |
PLA4 | 59.5 | 114.7 | 16.9 | 148.9 | 28.3 | 12.1 | 367.5 |
PLA5 | 59.5 | 115.0 | 24.5 | 149.6 | 25.5 | 1.1 | 366.9 |
PLA6 | 59.7 | 114.2 | 18.7 | 149.2 | 28.4 | 10.3 | 367.1 |
PLA7 | 59.4 | 114.5 | 17.2 | 148.4 | 27.9 | 11.4 | 366.6 |
PLA8 | 59.4 | 114.0 | 17.7 | 148.5 | 27.6 | 10.5 | 364.8 |
PLA9 | 59.7 | 114.4 | 17.3 | 149.2 | 27.9 | 11.3 | 365.3 |
PLA10 | 59.5 | 114.9 | 23.2 | 149.4 | 25.2 | 2.2 | 363.7 |
Sample | E’ @ 30 °C (GPa) | tanδ | Tg | tanδ cc (-) | tanδ cc (°C) | E’ cc (GPa) |
---|---|---|---|---|---|---|
PLA1 | 2.86 | 1.94 | 66.96 | 95.10 | 0.17 | 0.11 |
PLA2 | 2.95 | 1.90 | 67.28 | 95.30 | 0.16 | 0.10 |
PLA3 | 2.94 | 1.97 | 67.56 | 95.70 | 0.17 | 0.09 |
PLA4 | 3.00 | 1.99 | 67.48 | 94.50 | 0.16 | 0.10 |
PLA5 | 2.78 | 1.97 | 67.44 | 95.60/107.70 | 0.17/0.13 | 0.07/0.08 |
PLA6 | 2.86 | 1.93 | 66.64 | 95.10/109.20 | 0.16/0.09 | 0.10/0.09 |
PLA7 | 2.92 | 1.97 | 66.72 | 95.60/105.20/115.30 | 0.16/0.12/0.11 | 0.08/0.07 |
PLA8 | 3.01 | 1.99 | 66.76 | 95.40/106.60 | 0.16/0.14 | 0.07/0.08 |
PLA9 | 2.80 | 1.96 | 66.40 | 93.30 | 0.15 | 0.10 |
PLA10 | 2.68 | 2.05 | 67.19 | 94.30 | 0.17 | 0.10 |
Sample | Flexural Modulus (GPa) | Flexural Strength (MPa) | Strain at Strength (%) |
---|---|---|---|
PLA1 | 3.25 ± 0.01 | 94.41 ± 0.05 | 4.25 ± 0.05 |
PLA2 | 3.23 ± 0.05 | 94.19 ± 0.25 | 4.24 ± 0.02 |
PLA3 | 3.30 ± 0.07 | 94.50 ± 0.63 | 4.29 ± 0.09 |
PLA4 | 3.28 ± 0.08 | 98.59 ± 0.32 | 4.35 ± 0.02 |
PLA5 | 3.32 ± 0.03 | 93.87 ± 0.84 | 4.10 ± 0.17 |
PLA6 | 3.31 ± 0.01 | 93.78 ± 0.44 | 4.21 ± 0.04 |
PLA7 | 3.33 ± 0.03 | 94.59 ± 0.43 | 4.14 ± 0.13 |
PLA8 | 3.34 ± 0.05 | 95.27 ± 0.47 | 4.25 ± 0.05 |
PLA9 | 3.44 ± 0.03 | 97.31 ± 1.58 | 4.08 ± 0.40 |
PLA10 | 3.39 ± 0.05 | 98.05 ± 0.26 | 4.30 ± 0.06 |
Sample | Tensile Modulus (GPa) | Tensile Strength (MPa) | Strain at Strength (%) | Strain at Break (%) |
---|---|---|---|---|
PLA1 | 2.62 ± 0.23 | 68.20 ± 2.72 | 4.58 ± 0.29 | 5.18 ± 0.78 |
PLA2 | 2.55 ± 0.26 | 67.40 ± 0.51 | 4.48 ± 0.36 | 5.72 ± 0.55 |
PLA3 | 2.66 ± 0.33 | 67.90 ± 1.16 | 4.36 ± 0.35 | 5.34 ± 0.61 |
PLA4 | 2.00 ± 0.25 | 69.00 ± 0.73 | 4.22 ± 0.16 | 5.92 ± 0.90 |
PLA5 | 3.18 ± 0.15 | 67.50 ± 0.85 | 4.15 ± 0.24 | 4.94 ± 0.49 |
PLA6 | 2.69 ± 0.38 | 66.90 ± 0.92 | 4.08 ± 0.15 | 5.79 ± 0.64 |
PLA7 | 3.21 ± 0.32 | 66.60 ± 0.71 | 4.13 ± 0.15 | 4.99 ± 0.16 |
PLA8 | 2.73 ± 0.15 | 65.50 ± 0.74 | 4.13 ± 0.08 | 5.04 ± 0.37 |
PLA9 | 2.60 ± 0.33 | 66.30 ± 0.34 | 4.19 ± 0.15 | 5.67 ± 0.62 |
PLA10 | 2.86 ± 0.23 | 67.10 ± 0.8 | 4.09 ± 0.09 | 5.30 ± 0.41 |
Sample | L* | a* | b* | c* | h* |
---|---|---|---|---|---|
PLA1 | 89.60 ± 0.25 | −5.88 ± 0.10 | 7.98 ± 0.112 | 9.91 ± 0.15 | 126.38 ± 0.11 |
PLA2 | 88.51 ± 0.31 | −6.22 ± 0.13 | 8.43 ± 0.13 | 10.48 ± 0.18 | 126.40 ± 0.19 |
PLA3 | 87.96 ± 0.50 | −6.42 ± 0.19 | 8.64 ± 0.23 | 10.76 ± 0.30 | 126.61 ± 0.17 |
PLA4 | 87.17± 0.32 | −6.67 ± 0.11 | 8.97 ± 0.16 | 11.17 ± 0.19 | 126.66 ± 0.14 |
PLA5 | 86.43 ± 0.20 | −6.91 ± 0.09 | 9.22 ± 0.16 | 11.52 ± 0.17 | 126.84 ± 0.31 |
PLA6 | 86.80 ± 0.13 | −6.77 ± 0.07 | 9.06 ± 0.08 | 11.31 ± 0.09 | 126.76 ± 0.27 |
PLA7 | 85.98 ± 0.28 | −7.02 ± 0.10 | 9.45 ± 0.11 | 11.77 ± 0.14 | 126.57 ± 0.23 |
PLA8 | 85.47 ± 0.66 | −7.17 ± 0.22 | 9.60 ± 0.24 | 11.98 ± 0.32 | 126.75 ± 0.20 |
PLA9 | 84.81 ± 0.69 | −7.38 ± 0.24 | 9.84 ± 0.30 | 12.3 ± 0.38 | 126.87 ± 0.07 |
PLA10 | 84.78 ± 0.23 | −7.37 ± 0.07 | 9.85 ± 0.11 | 12.30 ± 0.12 | 126.80 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nešić, A.; Lorber, R.; Bolka, S.; Nardin, B.; Pilić, B. Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties. Polymers 2025, 17, 2164. https://doi.org/10.3390/polym17162164
Nešić A, Lorber R, Bolka S, Nardin B, Pilić B. Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties. Polymers. 2025; 17(16):2164. https://doi.org/10.3390/polym17162164
Chicago/Turabian StyleNešić, Aleksandra, Rebeka Lorber, Silvester Bolka, Blaž Nardin, and Branka Pilić. 2025. "Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties" Polymers 17, no. 16: 2164. https://doi.org/10.3390/polym17162164
APA StyleNešić, A., Lorber, R., Bolka, S., Nardin, B., & Pilić, B. (2025). Additive-Free Multiple Processing of PLA Pre-Consumer Waste: Influence on Mechanical and Thermal Properties. Polymers, 17(16), 2164. https://doi.org/10.3390/polym17162164