Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (889)

Search Parameters:
Keywords = chemical soil parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 143
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 286
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 278
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 199
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

25 pages, 4261 KiB  
Article
Influence of Mulching and Planting Density on Agronomic and Economic Traits of Melissa officinalis L.
by Stefan V. Gordanić, Dragoja Radanović, Miloš Rajković, Milan Lukić, Ana Dragumilo, Snežana Mrđan, Petar Batinić, Natalija Čutović, Sara Mikić, Željana Prijić and Tatjana Marković
Horticulturae 2025, 11(8), 866; https://doi.org/10.3390/horticulturae11080866 - 22 Jul 2025
Viewed by 338
Abstract
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw [...] Read more.
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw material quality, and economic efficiency in lemon balm production. The experiment was conducted at three locations in Serbia (L1: Bačko Novo Selo, L2: Bavanište, L3: Vilandrica) from 2022 to 2024, using two planting densities on synthetic mulch film (F1: 8.3 plants m−2; F2: 11.4 plants m−2) and a control treatment without mulch (C). The synthetic mulch film used was a synthetic black polypropylene film (Agritela Black, 90 g/m2), uniformly applied in strips across the cultivation area, covering approximately 78% of the soil surface. The results showed consistent increases in morphological parameters and yield across the years. Plant height in F1 and F2 treatments ranged from 65 to 75 cm, while in the control it reached up to 50 cm (2022–2024). Fresh biomass yield varied from 13.4 g per plant (C) to 378.08 g per plant (F2), and dry biomass yield from 60.3 g (C) to 125.4 g (F2). The highest essential oil content was observed in F2 (1.2% in 2022), while the control remained at 0.8%. The F2 treatment achieved complete weed suppression throughout the experiment without the use of herbicides, demonstrating both agronomic and ecological advantages. Economic evaluation revealed that F2 generated the highest cumulative profit (€142,164.5) compared to the control (€65,555.3). Despite higher initial investment, F2 had the most favorable cost–benefit ratio in the long term. This study highlights the crucial influence of mulching and planting density on optimizing lemon balm production across diverse climatic and soil conditions, while also underscoring the importance of sustainable, non-chemical weed management strategies in lemon balm cultivation. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Figure 1

20 pages, 2290 KiB  
Article
Use of Bacillus pretiosus and Pseudomonas agronomica for the Synthesis of a Valorized Water Waste Treatment Plant Waste as a Biofertilizer Intended for Quercus pyrenaica L. Fertigation
by Diana Penalba-Iglesias, Marina Robas-Mora, Daniel González-Reguero, Vanesa M. Fernández-Pastrana, Agustín Probanza and Pedro A. Jiménez-Gómez
Biology 2025, 14(7), 902; https://doi.org/10.3390/biology14070902 - 21 Jul 2025
Viewed by 230
Abstract
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected [...] Read more.
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected natural areas. Actions based on a circular economy, such as the use of organic chemical matrices recovered from water waste treatment plant waste, have proven to be effective. In this regard, the addition of plant growth-promoting bacteria (PGPB), such as Bacillus pretiosus and Pseudomonas agronomica, can contribute to the chemical treatment, favoring the recovery of soils, accelerating the recovery of vegetation cover, and inducing an increase in biodiversity. In this research, the effect of bio-fertigation under controlled laboratory conditions in Quercus pyrenaica is evaluated. After a thirty-six-week trial, the biometric and nutritional parameters of the plants were harvested and measured, and the diversity and composition of the metagenomes of their rhizospheres were evaluated. As well, the cenoantibiogram and the metabolic diversity were measured. The results showed that the use of these biofertilizers increased the variables related to plant production, quality of plant composition as an indirect means of their resilience, as well as an increase in rhizospheric microbial diversity and a reduction in their MIC resistance to the most widely used antibiotics. For all these reasons, the use of the biofertilizer result of the combination of WWTP waste, Bacillus pretiosus, and Pseudomonas agronomica is postulated as an environmentally friendly strategy that can contribute to the recovery of potential oak forest areas. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 267
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

26 pages, 10465 KiB  
Article
Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
by Jacek Kostrzewa, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska and Paweł Popielski
Materials 2025, 18(14), 3384; https://doi.org/10.3390/ma18143384 - 18 Jul 2025
Viewed by 331
Abstract
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high [...] Read more.
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high usability in specific hydrotechnical applications. Key laboratory tests for material characterization included physical, permeability, mechanical, and chemical property analyses. The tested waste corresponds to uniformly graded medium sands (uniformity coefficient: 2.20) and weakly calcareous (calcium carbonate content: 2.25–3.29%) mineral soils with organic content ranging from 0.24% to 1.49%. The minimum heavy metal immobilization level reached 91.45%. At maximum dry density of the soil skeleton (1.78/1.79 g/cm3) and optimal moisture content (11.34/11.95%), the hydraulic conductivity reached 4.38/7.71 m/d. The mechanical parameters of washed mineral waste included internal friction angle (34.4/37.8°) and apparent cohesion (9.37/14.98 kPa). The values of the determined parameters are comparable to those of natural sands used as construction aggregates. As a result, washed mineral waste has a high potential for use as an alternative material to natural sand in the analyzed hydrotechnical applications, particularly for flood embankment construction, by applicable technical standards and construction guidelines. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 295
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

18 pages, 1595 KiB  
Article
An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems
by Ewa M. Furmanczyk, Dawid Kozacki, Morgane Ourry, Samuel Bickel, Expedito Olimi, Sylvie Masquelier, Sara Turci, Anne Bohr, Heinrich Maisel, Lorenzo D’Avino and Eligio Malusà
Soil Syst. 2025, 9(3), 77; https://doi.org/10.3390/soilsystems9030077 - 14 Jul 2025
Viewed by 203
Abstract
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic [...] Read more.
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic groups’ abundance in fifteen fields hosting different cropping systems and managed according to organic or conventional practices. The nematode population densities differed significantly across cropping systems and management types covering various European climatic zones (spanning 121 to 799 individuals per sample). Population density was affected by the duration of the cropping system, with the lowest value in the vegetable cropping system (on average about 300 individuals) and the highest in the long-term fruiting system (on average more than 500 individuals). The occurrence and abundance of the different trophic groups was partly dependent on the cropping system or the management method, particularly for the bacteria, fungal and plant feeders. The taxonomical classification of a subset of samples allowed us to identify 22 genera and one family (Dorylaimidae) within the five trophic groups. Few taxa were observed in all fields and samples (i.e., Rhabditis and Cephalobus), while Aphelenchoides or Pratylenchus were present in the majority of samples. Phosphorus content was the only soil chemical parameter showing a positive correlation with total nematode population and bacterial feeders’ absolute abundance. Based on the nematological ecological indices, all three cropping systems were characterized by disturbed soil conditions, conductive and dominated by bacterivorous nematodes. This knowledge could lead to a choice of soil management practices that sustain a transition toward healthy soils. Full article
Show Figures

Figure 1

38 pages, 2675 KiB  
Review
Factors Influencing the Impact of Anaerobic Digestates on Soil Properties
by Péter Ragályi, Orsolya Szécsy, Nikolett Uzinger, Marianna Magyar, Anita Szabó and Márk Rékási
Soil Syst. 2025, 9(3), 78; https://doi.org/10.3390/soilsystems9030078 - 14 Jul 2025
Viewed by 387
Abstract
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in [...] Read more.
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in anaerobic digesters to produce biogas. This review focuses on the properties of anaerobic digestates and their effects on physical, chemical and biological soil parameters discussing the benefits, limitations and potential risks. Due to the variety of technologies and raw materials used, anaerobic digestates have diverse properties. Therefore, their impact on specific soil parameters, such as bulk density, aggregate stability, pH, electrical conductivity (EC), soil organic matter (SOM) or microbial activity can vary in magnitude and direction. These effects are also influenced by the variety of soils. Although digestates usually have a significant macro- and micronutrient content, their potentially toxic components or high salt content may limit their use. Despite the limitations, the application of anaerobic digestates generally has more advantages than disadvantages. The use of good-quality anaerobic digestates can improve the physical and chemical properties of the soil, increase soil nutrient and SOM content, as well as soil microbial activity. Full article
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Fertilization Effects of Solid Digestate Treatments on Earthworm Community Parameters and Selected Soil Attributes
by Anna Mazur-Pączka, Kevin R. Butt, Marcin Jaromin, Edmund Hajduk, Mariola Garczyńska, Joanna Kostecka and Grzegorz Pączka
Agriculture 2025, 15(14), 1511; https://doi.org/10.3390/agriculture15141511 - 13 Jul 2025
Viewed by 770
Abstract
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase [...] Read more.
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase the proportion of organic fertilizers in crop production and preserve soil biodiversity. An increasingly common organic fertilizer is biogas plant digestate, the physical and chemical properties of which depend primarily on the waste material used in biogas production. However, the fertilizer value of this additive and its effects on the soil environment, including beneficial organisms, remain insufficiently studied. Soil macrofauna, particularly earthworms, play a crucial role in soil ecosystems, because they significantly impact the presence of plant nutrients, actively participate in forming soil structures, and strongly influence organic matter dynamics. The present study was undertaken to determine the effects of fertilizing a silt loam soil with the solid fraction of digestate in monoculture crop production on earthworm community characteristics and the resulting changes in selected soil physicochemical properties. The research was conducted at a single site, so the original soil characteristics across the experimental plots were identical. Plots were treated annually (for 3 years; 2021–2023) with different levels of digestate: DG100 (100% of the recommended rate; 30 t ha−1), DG75 (75% of the recommended rate; 22.5 t ha−1), DG50 (15 t ha−1), DG25 (7.5 t ha−1), and CL (a control plot without fertilizer). An electrical method was used to extract earthworms. Those found at the study site belonged to seven species representing three ecological groups: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), and Dendrobaena octaedra (Sav.) (epigeics); Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), and Octolasion lacteum (Örley) (endogeics); and Lumbricus terrestris (L.) (anecics). Significant differences in the abundance and biomass of earthworms were found between the higher level treatments (DG100, DG75, and DG50), and the lowest level of fertilization and the control plot (DG25 and CL). The DG25 and CL plots showed an average of 24.7% lower earthworm abundance and 22.8% lower biomass than the other plots. There were no significant differences in the earthworm metrics between the plots within each of the two groups (DG100, DG75, and DG50; and DG25 and CL). The most significant influence on the average abundance and average biomass of Lumbricidae was probably exerted by soil moisture and the annual dosage of digestate. A significant increase in the abundance and biomass of Lumbricidae was shown at plots DG100, DG75, and DG50 in the three successive years of the experiment. The different fertilizer treatments were found to have different effects on selected soil parameters. No significant differences were found among the values of the analyzed soil traits within each plot in the successive years of the study. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Stabilization of Expansive Clay Using Volcanic Ash
by Svetlana Melentijević, Aitor López Marcos, Roberto Ponce and Sol López-Andrés
Geosciences 2025, 15(7), 261; https://doi.org/10.3390/geosciences15070261 - 8 Jul 2025
Cited by 2 | Viewed by 353
Abstract
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction [...] Read more.
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction in carbon emissions. Soil stabilization was performed on natural clays with very high swelling potential, i.e. those classified as inadequate for reuse as a building material for geotechnical purposes. A mineralogical and chemical characterization of raw materials was carried out prior to the performance of different geotechnical laboratory tests, i.e., testing Atterberg limits, compaction, swelling potential, compressibility and resistance parameters over naturally remolded clay and soil mixtures with different binders. The swelling potential was reduced with an increase in the amount of applied binder, necessitating the addition of 10, 20, and 30% of volcanic ash compared to 3% lime, 3% cement and 5% lime, respectively, for a similar reduction in swelling potential. An investigation of the resistance parameters for soil mixture specimens that provided a suitable reduction in swelling potential for their reuse was performed, and a comparison to the parameters of naturally remolded clay was made. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 362
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

29 pages, 11618 KiB  
Article
Improving Soil Health Using Date Palm Residues in Southern Tunisian Olive Orchards
by Najoua Chniguir, Abdelhakim Bouajila, Ángeles Prieto-Fernández, Zohra Omar, Salah Mahmoudi and Carmen Trasar-Cepeda
Land 2025, 14(7), 1414; https://doi.org/10.3390/land14071414 - 5 Jul 2025
Viewed by 413
Abstract
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date [...] Read more.
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date palm waste, and composted date palm waste mixed with manure. A randomised field trial was conducted over three years. Two years after application, soil samples were analysed for physical and chemical properties, basal respiration, nitrogen mineralisation, microbial biomass, enzyme activities (dehydrogenase, phosphomonoesterase, β-glucosidase, urease, arylsulphatase), and community-level physiological profiles. All residues increased SOM and available phosphorus (Pi), with dose-dependent effects sustained over time, though significant increases were only observed at the highest application rates. The most notable improvements occurred in soils amended with composted date palm waste. In contrast, biological and biochemical parameters showed little response, even after remoistening to stimulate microbial activity. This limited response was attributed to the absence of vegetation and, consequently, of root exudates and plant residues. This will be further investigated by assessing changes in the same biological and biochemical properties following the implementation of an intercropping system, which is expected to enhance both SOM content and microbial activity in these soils. Full article
Show Figures

Figure 1

Back to TopTop