Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
Abstract
1. Introduction
2. Results
2.1. Differences in Functional Traits of Brasenia schreberi Between Two Clustering Groups
2.2. Ecological Response of Functional Traits of Brasenia schreberi to Water and Soil Environmental Factors
2.3. Correlations Between Functional Traits in Brasenia schreberi Leaves
3. Research Area and Methods
3.1. Study Area Overview
3.2. Research Materials
3.3. Measurement of Plant Traits
3.4. Determination of Soil Elemental Content
3.5. Determination of Water Parameters
3.6. Data Analysis
4. Discussion
4.1. Differences Between Growth Stages in the Functional Characteristics of Brasenia schreberi
4.2. Response of Functional Traits of Brasenia schreberi to Aqueous Environmental Factors
4.3. Response of Functional Traits of Brasenia schreberi to Soil Nutrient Conditions
4.4. Functional Linkages Among Brasenia schreberi Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drzymulska, D. On the history of Brasenia Schreb. in the European Pleistocene. Veg. Hist. Archaeobotany 2018, 27, 527–534. [Google Scholar] [CrossRef]
- Lu, B.; Shi, T.; Chen, J. Chromosome-level genome assembly of watershield (Brasenia schreberi). Sci. Data 2023, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Cai, X.; Fan, Y.; Luo, A. Antioxidant activity of water-soluble polysaccharides from Brasenia schreberi. Pharmacogn. Mag. 2016, 12, 193. [Google Scholar] [PubMed]
- Zhu, H.L.; Du, J.; Liu, Z.W.; Sun, Y.L.; Li, M.H.; Peng, J.; Zhou, K.; Ke, W.D. Investigation and genetic diversity of wild water shield (Brasenia schreberi) in China. J. Plant Genet. Resour. 2020, 21, 1586–1595. [Google Scholar]
- Stachowicz-Rybka, R.; Pidek, I.A.; Żarski, M. New palaeoclimate reconstructions based on multidisciplinary investigation in the Ferdynandów 2011 stratotype site (eastern Poland). Geol. Q. 2017, 61, 276–290. [Google Scholar] [CrossRef]
- Thompson, K.A.; Sora, D.M.; Cross, K.S.; St. Germain, J.M.; Cottenie, K. Mucilage reduces leaf herbivory in Schreber’s watershield, Brasenia schreberi (Cabombaceae). Botany 2014, 92, 412–416. [Google Scholar] [CrossRef]
- Grasset, C.; Delolme, C.; Arthaud, F.; Bornette, G. Carbon allocation in aquatic plants with contrasting strategies: The role of habitat nutrient content. J. Veg. Sci. 2015, 26, 946–955. [Google Scholar] [CrossRef]
- Ai, T.; Wan, J.; Yu, X.; Liu, J.; Yin, C.; Yang, L.; Yang, L.; Liu, H.; Qin, R. The non-denatured processing of Brasenia schreberi mucilage—Characteristics of hydrodynamic properties and the effect on in vivo functions. Foods 2024, 13, 1824. [Google Scholar] [CrossRef]
- Feng, S.; Ning, K.; Luan, D.; Lu, S.; Sun, P. Chemical composition and antioxidant capacities analysis of different parts of Brasenia schreberi. J. Food Process. Preserv. 2019, 43, e14014. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Seago, J.L., Jr.; Wang, Q. Anatomical and histochemical features of Brasenia schreberi (Cabombaceae) shoots. Flora 2020, 263, 151524. [Google Scholar] [CrossRef]
- Li, J.F. The Impact of Simulated Warming on the Growth and Reproduction of Brasenia schreberi. Doctoral Dissertation, Nanjing University, Nanjing, China, 2021. [Google Scholar]
- Adams, F.S. Winterbud production and function in Brasenia schreberi. Rhodora 1969, 71, 417–433. [Google Scholar]
- Thien, L.B.; Bernhardt, P.; Devall, M.S.; Chen, Z.D.; Luo, Y.B.; Fan, J.H.; Yuan, L.C.; Williams, J.H. Pollination biology of basal angiosperms (ANITA grade). Am. J. Bot. 2009, 96, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, X.; Zhang, F.; Wang, X.; Wang, Q. Structure and ion physiology of Brasenia schreberi glandular trichomes in vivo. PeerJ 2019, 7, e7288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, C.; Wang, X.; Zhang, X.; Zhou, C. Physiological study on structure and ion permeability of mucilaginous hairs of Brasenia schreberi in Vivo. J. Yangtze Univ. Nat. Sci. Ed. 2020, 17, 85–90. [Google Scholar]
- Li, Z.Z.; Gichira, A.W.; Wang, Q.F.; Chen, J.M. Genetic diversity and population structure of the endangered basal angiosperm Brasenia schreberi (Cabombaceae) in China. PeerJ 2018, 6, e5296. [Google Scholar] [CrossRef]
- Xie, C.; Li, J.; Pan, F.; Fu, J.; Zhou, W.; Lu, S.; Li, P.; Zhou, C. Environmental factors influencing mucilage accumulation of the endangered Brasenia schreberi in China. Sci. Rep. 2018, 8, 17955. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Yu, C.; Chen, Y.; Tang, H.; Zhang, L. Water lilies as emerging models for Darwin’s abominable mystery. Hortic. Res. 2017, 4, 17051. [Google Scholar] [CrossRef]
- Kim, Y.D. Characterization of water and sediment environment in water shield (Brasenia schreberi) habitats. Korean J. Ecol. 1996, 19, 209–216. [Google Scholar]
- Zhang, Y.; Wang, L.; Hu, Y. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: Site study in Jiuduansha wetland. PLoS ONE 2015, 10, e0126951. [Google Scholar] [CrossRef]
- Zaman, T.; Asaeda, T. Effects of NH4−N concentrations and gradient redox level on growth and allied biochemical parameters of Elodea nuttallii (Planch.). Flora-Morphol. Distrib. Funct. Ecol. Plants 2013, 208, 211–219. [Google Scholar] [CrossRef]
- Wang, C.Q.; LI, H.X.; Peng, G.H.; Zhou, Y.H.; Li, T.X. Relationship between the conditions of soil and water quality and the growth of water shield (Brasenia schreberi). J. Sichuan Agric. Univ. 2000, 18, 265–268. [Google Scholar]
- Zheng, Y.X.; Xiang, Q.; Zhang, W.; Zhao, S.; Yan, Z.; Xiao, L.; Wang, D.; Qu, Z. Effects of formula fertilization on growth, yield and quality of water shield. Yangtze River Veg. 2018, 14, 65–67. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- R Core Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M.A.S.S. The vegan package. Community Ecol. Package 2007, 10, 631–637. [Google Scholar]
- Sanchez, G. PLS path modeling with R. Berkeley Trowchez Ed. 2013, 383, 551. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Jarvis, A.J.; Davies, W.J. The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot. 1998, 49, 399–406. [Google Scholar] [CrossRef]
- Oliveira-Junior, E.S.; Tang, Y.; van den Berg, S.J.; Cardoso, S.J.; Lamers, L.P.; Kosten, S. The impact of water hyacinth (Eichhornia crassipes) on greenhouse gas emission and nutrient mobilization depends on rooting and plant coverage. Aquat. Bot. 2018, 145, 1–9. [Google Scholar] [CrossRef]
- Foyer, C.H.; Shigeoka, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef]
- Constable, J.V.; Longstreth, D.J. Aerenchyma carbon dioxide can be assimilated in Typha Iatifolia L. leaves. Plant Physiol. 1994, 106, 1065–1072. [Google Scholar] [CrossRef]
- Cochrane, G.; Karsch-Mizrachi, I.; Takagi, T.; Sequence Database Collaboration, I.N. The international nucleotide sequence database collaboration. Nucleic Acids Res. 2016, 44, D48–D50. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, H.; Chen, H.; Zhang, W.; Liu, Z.; Li, Q.; Sun, M. Growth of Brasenia schreberi requries good water quality and appropriate sediment nitrogen content. Front. Plant Sci. 2025, 16, 1535395. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, soil, and plants interactions in a threatened environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Galka, M.M.; Rajagopalan, N.; Buhrow, L.M.; Nelson, K.M.; Switala, J.; Cutler, A.J.; Palmer, D.R.; Loewen, P.C.; Abrams, S.R.; Loewen, M.C. Identification of interactions between abscisic acid and ribulose-1, 5-bisphosphate carboxylase/oxygenase. PLoS ONE 2015, 10, e0133033. [Google Scholar] [CrossRef]
- Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 2021, 184, 6299–6312. [Google Scholar] [CrossRef] [PubMed]
- Terashima, I.; Hanba, Y.T.; Tholen, D.; Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011, 155, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Striker, G.G. An overview of oxygen transport in plants: Diffusion and convection. Plant Biol. 2023, 25, 842–847. [Google Scholar] [CrossRef]
- Nakamura, M.; Gao, Y.; Dominguez, A.A.; Qi, L.S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 2021, 23, 11–22. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U.; Månsson, K.F.; Olsson, M.O. Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ. Exp. Bot. 2000, 44, 207–219. [Google Scholar] [CrossRef]
- Chen, H.Y.; Sun, M.; Liu, Z.Y.; Yang, H.M. Response of leaf economic traits of natural Brasenia schreberi to water environment in high altitude area. Chin. J. Ecol. 2024, 43, 1763–1771. [Google Scholar]
- Jampeetong, A.; Brix, H. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol. Eng. 2009, 35, 695–702. [Google Scholar] [CrossRef]
- Shi, J.; Li, S.; Xi, L.; Peng, F.; Li, Y. Characteristics of Brasenia schreberi Community and Its Relationship with Water Environmental Factors in Alpine Wetland of Southern Hunan. Wetland Sci. 2024, 22, 972–980. [Google Scholar]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.R.; Islam, M.S.; Kundu, P.; Mallick, U.K. Modeling the effects of algal bloom on dissolved oxygen in eutrophic water bodies. J. Math. 2023, 2023, 2335570. [Google Scholar] [CrossRef]
- Wang, Q.X.; Peng, S.T.; Gan, W.Y.; Peng, Z.D.; Xu, Q.; Wang, J.; Huang, L.J. Response of reed leaf and fine root functional traits to water and salt environment: A case study of Fuzhou section of the Min River. Acta Ecol. Sin. 2024, 44, 8338–8348. [Google Scholar]
- Hudson, J.M.G.; Henry, G.H.R.; Cornwell, W.K. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Chang. Biol. 2011, 17, 1013–1021. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Huang, J. Effects of Increasing Water Temperature on Water Properties and Aquatic Organisms: A Critical Review. J. Hydroecol. 2020, 41, 100–109. [Google Scholar]
- Said, N.E.; McMahon, K.; Lavery, P.S. Accounting for the influence of temperature and location when predicting seagrass (Halophila ovalis) photosynthetic performance. Estuaries Coasts Shelf Sci. 2021, 257, 107414. [Google Scholar] [CrossRef]
- Delgard, M.L.; Deflandre, B.; Kochoni, E.; Avaro, J.; Cesbron, F.; Bichon, S.; Poirier, D.; Anschutz, P. Biogeochemistry of dissolved inorganic carbon and nutrients in seagrass (Zostera noltei) sediments at high and low biomass. Estuar. Coast. Shelf Sci. 2016, 179, 12–22. [Google Scholar] [CrossRef]
- Kiani, M.; Raave, H.; Simojoki, A.; Tammeorg, O.; Tammeorg, P. Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Sci. Total Environ. 2021, 753, 141984. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.K.; Sharma, S.; Sharma, A.; Singh, K.K.; Pal, P.K. Integration of biochar with nitrogen in acidic soil: A strategy to sequester carbon and improve the yield of stevia via altering soil properties and nutrient recycling. J. Environ. Manag. 2023, 345, 118872. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, P.; Prasad, M.; Singh, T.B.; Yadav, A.; Goyal, D.; Ali, A.; Dantu, P.K. Role of nutrients in plant growth and development. In Contaminants in Agriculture: Sources, Impacts and Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 43–59. [Google Scholar]
- Pandey, S.N.; Abid, M.; Abid Ali Khan, M.M. Diversity, functions, and stress responses of soil microorganisms. In Plant Microbiome: Stress Response; Springer: Singapore, 2018; pp. 1–19. [Google Scholar]
- Chen, X.N.; Zhao, N.Q.; Duan, N.; Gegen, B.T.; Zhang, J.B.; Shi, S.Y. Plant response to water and nitrogen addition: A review. J. Temp. For. Res. 2022, 5, 8–11. [Google Scholar]
- Ma, D.; Teng, W.; Mo, Y.T.; Yi, B.; Chen, W.L.; Pang, Y.P.; Wang, L. Effects of nitrogen, phosphorus, and potassium fertilization on plant growth, element levels in plants and soil, and the relationships among nutrient concentrations, plant yield, and nutrient status in Erythropalum scandens (Blume). J. Plant Nutr. 2024, 47, 82–96. [Google Scholar] [CrossRef]
- Dong, J.W.; Wang, D.H.; Liu, Z.B.; Yang, J.G.; Chen, T.X.; Wu, S.H.; Li, Q.; Liu, Y. Investigation on the original habitats of Brasenia schreberi in Hunan Province. Hunan Agric. Sci. 2025, 1, 45–52. [Google Scholar]
- Nguyen, T.B.A.; Lefoulon, C.; Nguyen, T.H.; Blatt, M.R.; Carroll, W. Engineering stomata for enhanced carbon capture and water-use efficiency. Trends Plant Sci. 2023, 28, 1290–1309. [Google Scholar] [CrossRef]
- Clark, J.W.; Harris, B.J.; Hetherington, A.J.; Hurtado-Castano, N.; Brench, R.A.; Casson, S.; Williams, T.A.; Gray, J.E.; Hetherington, A.M. The origin and evolution of stomata. Curr. Biol. 2022, 32, R539–R553. [Google Scholar] [CrossRef]
- Ni, R.W.; Gan, Y.T.; Yang, G.M.; Huang, L.J.; Liu, X.Z.; Yan, S.J. Trade-off the characteristics of stomata in subtropical urban vegetation and its relationship with leaf functional traits under heat island effect. Acta Ecol. Sin. 2023, 43, 5336–5346. [Google Scholar]
- Zukswert, J.M.; Vadeboncoeur, M.A.; Yanai, R.D. Responses of stomatal density and carbon isotope composition of sugar maple and yellow birch foliage to N, P and CaSiO3 fertilization. Tree Physiol. 2024, 44, tpad142. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Alaoui, I.; Serbouti, S.; Ahmed, H.; Mansouri, I.; El Kamari, F.; Taroq, A.; Ousaaid, D.; Squalli, W.; Farah, A. The mechanisms of absorption and nutrients transport in plants: A review. Trop. J. Nat. Prod. Res. 2022, 6, 8–14. [Google Scholar]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Mandlik, R.; Thakral, V.; Raturi, G.; Shinde, S.; Nikolić, M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 2020, 71, 6703–6718. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Krause, M. The plant leaf: A biomimetic resource for multifunctional and economic design. Biomimetics 2023, 8, 145. [Google Scholar] [CrossRef]
- Bauer, P.; Elbaum, R.; Weiss, I.M. Calcium and silicon mineralization in land plants: Transport, structure and function. Plant Sci. 2011, 180, 746–756. [Google Scholar] [CrossRef]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Beerling, D.J. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef]
- Yamauchi, T.; Nakazono, M. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Plant Sci. 2022, 321, 111340. [Google Scholar] [CrossRef]
Parameter | WH | WT | PH | DO | Nwater | Pwater | NH4+ | NO3− | BOD | COD | CODMn | Csoil | Nsoil | Psoil | K | Ca | Mg | Zn | Si |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pn | −0.114 | −0.101 | 0.434 ** | 0.315 ** | −0.211 | −0.292 * | 0.328 ** | 0.485 ** | −0.127 | −0.165 | −0.060 | −0.370 ** | −0.384 ** | −0.360 ** | 0.214 | −0.223 | 0.314 ** | 0.366 ** | 0.362 ** |
Gs | −0.091 | −0.216 | −0.037 | −0.144 | −0.277 * | −0.021 | −0.017 | −0.180 | −0.034 | −0.069 | −0.053 | −0.033 | −0.060 | 0.18 | 0.068 | 0.057 | 0.043 | 0.110 | −0.108 |
Ci | −0.063 | 0.025 | −0.423 ** | −0.312 ** | 0.038 | 0.280 * | −0.335 ** | −0.477 ** | 0.218 | 0.246 * | 0.163 | 0.090 | 0.106 | 0.210 | 0.076 | 0.007 | −0.059 | −0.011 | −0.145 |
Tr | −0.435 ** | −0.407 ** | 0.049 | −0.214 | −0.165 | −0.063 | −0.139 | 0.153 | 0.270 * | 0.241 * | 0.300 * | −0.353 ** | −0.396 ** | −0.308 * | 0.345 ** | −0.288 * | 0.236 | 0.431 ** | 0.259 * |
LA | 0.407 ** | 0.436 ** | 0.441 ** | 0.664 ** | −0.184 | −0.315 ** | 0.330 ** | 0.285 * | −0.397 ** | −0.363 ** | −0.405 ** | 0.128 | 0.191 | 0.028 | −0.237 | 0.031 | −0.043 | −0.104 | 0.007 |
LP | 0.375 ** | 0.434 ** | 0.409 ** | 0.663 ** | −0.177 | −0.297* | 0.379 ** | 0.292 * | −0.342 ** | −0.317 ** | −0.351 ** | 0.169 | 0.232 | 0.011 | −0.251* | 0.046 | −0.057 | −0.122 | −0.001 |
L/W | 0.277 * | 0.190 | 0.079 | 0.309 * | −0.141 | −0.106 | −0.031 | −0.108 | −0.219 | −0.187 | −0.258 | 0.040 | 0.047 | 0.029 | −0.123 | −0.009 | −0.086 | −0.034 | −0.042 |
LP2/LA | 0.014 | 0.104 | 0.015 | 0.186 | −0.036 | −0.028 | 0.260 * | 0.114 | 0.109 | 0.083 | 0.102 | 0.194 | 0.207 | −0.078 | −0.129 | 0.079 | −0.095 | −0.118 | −0.033 |
SD | 0.086 | 0.294 | −0.020 | 0.165 | −0.106 | 0.054 | 0.055 | −0.059 | −0.062 | −0.039 | −0.026 | 0.139 | 0.218 | 0.374 ** | −0.122 | 0.168 | −0.031 | −0.176 | −0.188 |
SL | 0.049 | −0.114 | 0.348 ** | 0.113 | 0.078 | −0.08 | 0.262 * | 0.348 ** | 0.040 | −0.012 | 0.026 | 0.060 | 0.006 | −0.361** | −0.104 | −0.017 | −0.103 | −0.057 | 0.119 |
SW | −0.069 | −0.161 | 0.039 | 0.017 | −0.006 | −0.13 | 0.139 | 0.190 | 0.142 | 0.098 | 0.132 | −0.036 | −0.086 | −0.283* | 0.056 | −0.063 | −0.029 | 0.031 | 0.120 |
SA | −0.009 | −0.152 | 0.184 | 0.06 | 0.037 | −0.104 | 0.197 | 0.261 * | 0.096 | 0.045 | 0.080 | 0.008 | −0.051 | −0.339 ** | −0.022 | −0.044 | −0.071 | −0.011 | 0.123 |
VD | −0.047 | −0.354 ** | −0.139 | −0.433 ** | −0.184 | 0.039 | −0.235 | −0.256 * | 0.029 | −0.011 | 0.011 | 0.201 | 0.136 | 0.182 | −0.107 | 0.355 ** | −0.339 ** | −0.216 | −0.366 ** |
BA | −0.044 | 0.069 | −0.119 | −0.127 | −0.054 | −0.146 | 0.155 | −0.045 | −0.030 | −0.050 | −0.009 | −0.011 | −0.005 | −0.009 | 0.174 | 0.060 | 0.049 | −0.012 | 0.062 |
AS | 0.067 | 0.114 | 0.029 | 0.095 | 0.196 | −0.051 | 0.006 | 0.103 | 0.170 | 0.190 | 0.125 | 0.079 | 0.095 | −0.169 | −0.066 | −0.069 | −0.065 | −0.049 | 0.093 |
AA | 0.122 | 0.110 | 0.071 | 0.244 * | −0.231 | −0.371 ** | 0.158 | 0.129 | −0.095 | −0.076 | −0.087 | −0.089 | −0.070 | −0.225 | 0.090 | −0.091 | 0.134 | 0.110 | 0.226 |
CT | −0.099 | −0.352 ** | 0.100 | −0.161 | −0.209 | −0.153 | −0.044 | 0.129 | 0.010 | −0.023 | 0.034 | 0.068 | 0.021 | −0.015 | −0.056 | 0.104 | −0.179 | −0.106 | −0.141 |
ET | −0.054 | 0.168 | −0.045 | 0.21 | −0.037 | −0.299 * | 0.260 * | 0.156 | −0.073 | −0.072 | −0.057 | −0.148 | −0.101 | −0.028 | 0.218 | −0.116 | 0.209 | 0.186 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Liu, Z.; Yu, J.; Zhang, Y.; Xu, R.; Li, J.; Xu, Y.; Sun, M. Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status. Plants 2025, 14, 2072. https://doi.org/10.3390/plants14132072
Yao J, Liu Z, Yu J, Zhang Y, Xu R, Li J, Xu Y, Sun M. Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status. Plants. 2025; 14(13):2072. https://doi.org/10.3390/plants14132072
Chicago/Turabian StyleYao, Jingyu, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu, and Mei Sun. 2025. "Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status" Plants 14, no. 13: 2072. https://doi.org/10.3390/plants14132072
APA StyleYao, J., Liu, Z., Yu, J., Zhang, Y., Xu, R., Li, J., Xu, Y., & Sun, M. (2025). Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status. Plants, 14(13), 2072. https://doi.org/10.3390/plants14132072