Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,216)

Search Parameters:
Keywords = chemical competition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3304 KB  
Article
Mechanistic Pathways Controlling Cadmium Bioavailability and Ecotoxicity in Agricultural Systems: A Global Meta-Analysis of Lime Amendment Strategies
by Jianxun Qin, Keke Sun, Yongfeng Sun, Shunting He, Yanwen Zhao, Junyuan Qi, Yimin Lan, Beilei Wei and Ziting Wang
Biology 2026, 15(3), 207; https://doi.org/10.3390/biology15030207 - 23 Jan 2026
Abstract
Cadmium (Cd) contamination in agricultural systems poses significant ecotoxicological risks through bioaccumulation in food chains. While lime-based amendments are widely applied for Cd immobilization, mechanistic understanding of bioavailability control pathways remains limited. This study employed a meta-analysis methodology based on 260 datasets from [...] Read more.
Cadmium (Cd) contamination in agricultural systems poses significant ecotoxicological risks through bioaccumulation in food chains. While lime-based amendments are widely applied for Cd immobilization, mechanistic understanding of bioavailability control pathways remains limited. This study employed a meta-analysis methodology based on 260 datasets from 55 publications to systematically investigate the mechanisms and differences in the effectiveness of calcium hydroxide, calcium carbonate, and calcium oxide in regulating Cd migration in acidic soil–plant systems. The study revealed that lime-based materials synergistically regulated Cd migration through two processes: chemical fixation and ionic competition. Results showed lime application reduced soil available Cd by 33.0%, decreased grain Cd by 44.8%, increased soil pH by 15.6%, and enhanced exchangeable Ca by 35.2%. Chemical fixation was evidenced by Cd transformation from labile to stable forms (residual Cd: +29.5%, acid-soluble Cd: −17.5%). Ionic competition was quantitatively confirmed through strong negative correlation between exchangeable Ca and grain Cd (R2 = 0.704). Among the materials, Ca(OH)2 exhibits the highest efficiency in rapid pedogenic passivation (58.7% reduction in available Cd), whereas CaCO3 demonstrates superior long-term grain Cd attenuation (65.7% inhibition) via sustained Ca2+ release and rhizosphere-regulated dissolution. This study advances mechanistic understanding of Cd bioavailability control and establishes quantitative frameworks for predicting ecotoxicological outcomes, providing scientific basis for optimizing remediation strategies to minimize Cd transfer through agricultural food chains. Full article
(This article belongs to the Section Toxicology)
Show Figures

Graphical abstract

20 pages, 8035 KB  
Article
A Combined Glutaraldehyde and Denitrifying Bacteria Strategy for Enhanced Control of SRB-Induced Corrosion in Shale Gas Infrastructure
by Yu Guo, Chongrong Wen, Ming Duan and Guihong Lan
Processes 2026, 14(2), 334; https://doi.org/10.3390/pr14020334 - 17 Jan 2026
Viewed by 135
Abstract
Microbiologically influenced corrosion induced by sulfate-reducing bacteria (SRB) poses a significant threat to shale gas pipeline integrity. This study investigates an integrated control strategy combining the biocide glutaraldehyde with denitrifying bacteria (DNB) to synergistically inhibit SRB activity and corrosion. The efficacy and mechanisms [...] Read more.
Microbiologically influenced corrosion induced by sulfate-reducing bacteria (SRB) poses a significant threat to shale gas pipeline integrity. This study investigates an integrated control strategy combining the biocide glutaraldehyde with denitrifying bacteria (DNB) to synergistically inhibit SRB activity and corrosion. The efficacy and mechanisms were systematically evaluated using electrochemical measurements (EIS, LPR), weight-loss analysis, surface characterization (SEM, maximum pit depth), and microbial community profiling (16S rDNA sequencing). Compared to the SRB-inoculated system, the combined treatment reduced the average corrosion rate of L245 steel by 44.2% (to 0.01608 mm/a) and the maximum pit depth by 84.3% (to 1.53 μm). EIS results further confirmed the superior inhibition effect, showing the largest capacitive arc diameter and the highest polarization resistance in the combined system. Microbial community analysis indicated a substantial decline in SRB abundance from 62.7% (day 1) to 11.9% (day 14). This synergistic strategy presents an effective and more sustainable approach by reducing chemical dosage and leveraging the bio-competitive exclusion by DNB. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

14 pages, 4023 KB  
Article
Column Multisorption Studies of Herbicides onto ACs from Pomegranate Peels
by Assala Guedri, Souad Najar-Souissi, Beatriz Ledesma and Silvia Román
Appl. Sci. 2026, 16(2), 948; https://doi.org/10.3390/app16020948 - 16 Jan 2026
Viewed by 93
Abstract
The competitive adsorption of two model herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA), onto Activated Carbons (ACs) derived from pomegranate peels through chemical activation with phosphoric acid (H3PO4) was investigated in fixed-bed column mode. The prepared activated carbon [...] Read more.
The competitive adsorption of two model herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA), onto Activated Carbons (ACs) derived from pomegranate peels through chemical activation with phosphoric acid (H3PO4) was investigated in fixed-bed column mode. The prepared activated carbon (AC-PA) exhibited a high apparent surface area (up to 1409 m2/g) and a predominantly microporous structure. Morphological and chemical analyses (micrographic observation, X-ray difraction, N2 adsorption–desorption) confirmed the presence of well-developed pore networks and surface oxygenated functionalities. Column adsorption experiments were performed under varying flow rates (0.25–3 mL/min) for both single and binary solutions. The breakthrough data were modeled using the Thomas and Yoon–Nelson equations, achieving high determination coefficients (R2 = 0.91–0.99). Lower flow rates favored higher adsorption capacities, reaching 193.61 mg/g for 2,4-D at 0.25 mL/min. Under similar conditions (flow rate of 1.5 mL min−1), the AC provided a better adsorption for 2,4-D than for MCPA in single systems, which was attributed to stronger affinity based on its greater hydrophobicity and prominence to dispersive interactions. In binary systems, competitive effects shifted the results and a noticeable roll-up phenomenon was observed for 2,4-D, attributed to its displacement by MCPA along the bed; this made the adsorbent more effective for MCPA in binary mixtures than in single ones. These findings highlight the potential of pomegranate-based activated carbon as a cost-effective and sustainable adsorbent for herbicide removal in continuous water treatment systems. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

25 pages, 23886 KB  
Article
Co-Disposal of Coal Gangue and Aluminum Dross for Fiber-Reinforced Cemented Foamed Backfill
by Chong Liu, Shouxin Wu, Shaoqi Kong, Shiyu Zhang, Guoan Ren and Ruixue Feng
Minerals 2026, 16(1), 81; https://doi.org/10.3390/min16010081 - 15 Jan 2026
Viewed by 144
Abstract
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, [...] Read more.
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, and deformation characteristics, the research identifies critical mechanisms for optimizing backfill performance. Calcination of MCG at 700 °C enhances gelling activity via amorphous phase formation, while modified aluminum dross (MAD) treated at 950 °C develops dense α-Al2O3 and spinel phases, significantly improving chemical stability. In acidic environments, the suppression of calcium silicate hydrate (C-S-H) is offset by the development of Al3+-driven C-A-S-H gels. These gels adopt a tobermorite-like structure, substantially increasing acid resistance. Mechanical testing reveals that while 1% fiber reinforcement promotes nucleation and densification, a 2% concentration hinders hydration. Compressive strength at 28 days shows constrained growth due to pore inhibition, and failure modes transition from multi-crack parallel failure (3-day) to single-crack tensile-shear failure. Under acidic conditions, strain concentration in the upper sample highlights a competitive mechanism between Al3+ migration and fiber anchorage. Ultimately, the coordinated regulation of MCG/MAD and fiber content provides a robust solution for roof support in challenging thermo-chemical mining environments. Full article
Show Figures

Figure 1

29 pages, 2836 KB  
Review
Harnessing Endophytic Fungi for Sustainable Agriculture: Interactions with Soil Microbiome and Soil Health in Arable Ecosystems
by Afrin Sadia, Arifur Rahman Munshi and Ryota Kataoka
Sustainability 2026, 18(2), 872; https://doi.org/10.3390/su18020872 - 15 Jan 2026
Viewed by 370
Abstract
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to [...] Read more.
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to the physicochemical and biological dimensions of soil health in arable ecosystems. We examine evidence showing that EFs enhance plant nutrition through phosphate solubilization, siderophore-mediated micronutrient acquisition, and improved nitrogen use efficiency while also modulating plant hormones and stress-responsive pathways. EFs further increase crop resilience to drought, salinity, and heat; suppress pathogens; and influence key soil properties including aggregation, organic matter turnover, and microbial network stability. Recent integration of multi-omics, metabolomics, and community-level analyses has shifted the field from descriptive surveys toward mechanistic insight, revealing how EFs regulate nutrient cycling and remodel rhizosphere communities toward disease-suppressive and nutrient-efficient states. A central contribution of this review is the linkage of EF-mediated plant functions with soil microbiome dynamics and soil structural processes framed within a translational pipeline encompassing strain selection, formulation, delivery, and field scale monitoring. We also highlight current challenges, including context-dependent performance, competition with native microbiota, and formulation and deployment constraints that limit consistent outcomes under field conditions. By bridging microbial ecology with agronomy, this review positions EFs as biocontrol agents, biofertilizers, and ecosystem engineers with strong potential for resilient, low-input, and climate-adaptive cropping systems. Full article
Show Figures

Figure 1

24 pages, 2470 KB  
Review
Metal–Support Interactions in Single-Atom Catalysts for Electrochemical CO2 Reduction
by Alexandra Mansilla-Roux, Mayra Anabel Lara-Angulo and Juan Carlos Serrano-Ruiz
Nanomaterials 2026, 16(2), 103; https://doi.org/10.3390/nano16020103 - 13 Jan 2026
Viewed by 302
Abstract
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition [...] Read more.
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition with the hydrogen evolution reaction (HER). Single-atom catalysts (SACs) have emerged as powerful materials to address these challenges because they combine maximal metal utilization with well-defined coordination environments whose electronic structure can be precisely tuned through metal–support interactions. This minireview summarizes current understanding of how structural, electronic, and chemical features of SAC supports (e.g., porosity, heteroatom doping, vacancies, and surface functionalization) govern the adsorption and conversion of key CO2RR intermediates and thus control product distributions from CO to CH4, CH3OH and C2+ species. Particular emphasis is placed on selectivity descriptors (e.g., coordination number, d-band position, binding energies of *COOH and *OCHO) and on rational design strategies that exploit curvature, microenvironment engineering, and electronic metal–support interactions to direct the reaction along desired pathways. Representative SAC systems based primarily on N-doped carbons, complemented by selected examples on oxides and MXenes are discussed in terms of Faradaic efficiency (FE), current density and operational stability under practically relevant conditions. Finally, the review highlights remaining bottlenecks and outlines future directions, including operando spectroscopy and data-driven analysis of dynamic single-site ensembles, machine-learning-assisted DFT screening, scalable mechanochemical synthesis, and integration of SACs into industrially viable electrolyzers for carbon-neutral chemical production. Full article
Show Figures

Figure 1

39 pages, 1790 KB  
Review
Lactic Acid Bacteria as the Green and Safe Food Preservatives: Their Mechanisms, Applications and Prospects
by Yuwei Zhang, Lianrui Li, Xiaoyang Pang, Shuwen Zhang, Yang Liu, Yunna Wang, Ning Xie and Xu Li
Foods 2026, 15(2), 241; https://doi.org/10.3390/foods15020241 - 9 Jan 2026
Viewed by 273
Abstract
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean [...] Read more.
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean label” products, have driven the search for natural alternatives. Lactic acid bacteria (LAB), recognized as the Generally Recognized as Safe (GRAS) microorganisms, have emerged as the promising bio-preservatives due to their safety, effectiveness, and multifunctionality. This review systematically summarized the core antimicrobial properties of LAB, including their inhibitory spectrum against foodborne pathogens, spoilage microorganisms, viruses, parasites, and their ability to degrade toxic substances such as mycotoxins, pesticides, and heavy metals. Key inhibitory mechanisms of LAB are highlighted, encompassing the production of antimicrobial metabolites, leading to metabolism disruption and cell membrane damage, nutrition and niche competition, quorum-sensing interference, and anti-biofilm formation. Furthermore, recent advances in LAB applications in preserving various food matrices (meat, dairy products, fruits and vegetables, cereals) are integrated, including their roles in enhancing food sensory quality, extending shelf life, and retaining nutritional value. The review also discusses critical factors influencing LAB’s inhibitory activity (medium composition, culture conditions, ionic components, pathway regulator, etc.) and the challenges associated with the application of LAB. Finally, future research directions are outlined, including the novel LAB and metabolites exploration, AI-driven cultural condition optimization, genetic engineering application, nano-encapsulation and active packaging development, and building up the LAB-based cellular factories. In conclusion, LAB and their antimicrobial metabolites hold great promise as green and safe food preservatives. This review is to provide comprehensive theoretical support for the rational improvement and efficient application of LAB-based natural food preservatives, contributing to the development of a safer and more sustainable food processing and preservation systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 2260 KB  
Article
From Waste to Wealth: Integrating Fecal Sludge-Based Co-Compost with Chemical Fertilizer to Enhance Nutrient Status and Carbon Storage in Paddy Soils
by Sabina Yeasmin, Md. Sabbir Hosen, Zaren Subah Betto, Md. Kutub Uddin, Md. Parvez Anwar, Md. Masud Rana, A. K. M. Mominul Islam, Tahsina Sharmin Hoque and Sirinapa Chungopast
Nitrogen 2026, 7(1), 10; https://doi.org/10.3390/nitrogen7010010 - 7 Jan 2026
Viewed by 286
Abstract
This study evaluated the effects of applying fecal sludge-based co-compost (CC) integrated with chemical fertilizers on soil nutrient status, organic carbon (OC) storage, and economic returns in paddy soils. Ten integrated nutrient management (INM) treatments were tested, i.e., BRRI recommended dose of fertilizer [...] Read more.
This study evaluated the effects of applying fecal sludge-based co-compost (CC) integrated with chemical fertilizers on soil nutrient status, organic carbon (OC) storage, and economic returns in paddy soils. Ten integrated nutrient management (INM) treatments were tested, i.e., BRRI recommended dose of fertilizer (RDF), CC 5.0 t ha−1, RDF + CC 2.0 t ha−1, RDF + CC 1.5 t ha−1, RDF + CC 1.0 t ha−1, RDF + CC 0.5 t ha−1, 75% RDF + CC 2.0 t ha−1, 75% RDF + CC 1.5 t ha−1, 75% RDF + CC 1.0 t ha−1, and 75% RDF + CC 0.5 t ha−1. Two rice varieties were cultivated over two consecutive seasons—winter rice (boro) and monsoon rice (aman)—in the experimental field. Soil samples (0–15 cm) were collected before and after the seasons and fractionated into labile particulate organic matter (>53 µm) and stable mineral-associated organic matter (<53 µm). Bulk soils and CC were analyzed for OC, nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and heavy metals, while the fractions were analyzed for OC and N. Across both seasons, 75% RDF combined with 2.0 t ha−1 or 1.5 t ha−1 of CC consistently showed the highest OC, total N, and soil C stock, with moderate P, K, and S levels. Sole RDF produced the lowest OC and N. Among fractions, stable OC was the highest in the 75% RDF + 2.0 t ha−1 CC treatment, statistically similar to 75% RDF + 1.5 t ha−1 CC, and the lowest under RDF alone. Economically, sole RDF yielded the highest profit, while full RDF + CC achieved competitive returns. Reduced RDF + CC treatments (75% RDF + 1.5 or 2.0 t ha−1 CC) offered slightly lower returns but improved soil sustainability indicators. Overall, applying 75% RDF + 1.5 t ha−1 CC provided the most cost-effective balance of nutrient enrichment, soil C stock, and profitability. This CC-based INM approach reduces chemical fertilizer dependency, enhances soil health, and promotes sustainable waste management, supporting environmentally resilient rice production. Full article
(This article belongs to the Special Issue Nitrogen Uptake and Loss in Agroecosystems)
Show Figures

Figure 1

17 pages, 2897 KB  
Article
Green Hybrid Biopolymeric Beads for Efficient Removal of Copper Ions from Aqueous Solutions: Experimental Studies Assisted by Monte Carlo Simulation
by Ilias Barrak, Ikrame Ayouch, Zineb Kassab, Youness Abdellaoui, Jaber Raissouni, Said Sair, Mounir El Achaby and Khalid Draoui
Analytica 2026, 7(1), 5; https://doi.org/10.3390/analytica7010005 - 5 Jan 2026
Viewed by 281
Abstract
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, [...] Read more.
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, namely air-drying and freeze-drying, and characterized using scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. The study investigated factors such as pH, adsorbent dosage, reaction time, Cu(II) ions concentration, and temperature to elucidate the adsorption mechanisms involved in removing copper ions. The results indicated that the hydrogel exhibited a maximum adsorption capacity of 99.05 mg·g−1, which is highly competitive compared to previous studies; the AL@CMC beads prepared in this work show a significantly higher adsorption capacity, improved stability due to the interpenetrated biopolymer network, and a clear enhancement from freeze-drying, which greatly increases porosity and active surface area. In addition, the pseudo-second-order nonlinear kinetic model best described the experimental data, implying the chemical nature of the adsorption process. Furthermore, the thermodynamic studies revealed that the adsorption process was endothermic, spontaneous, and homogenous. A Monte Carlo simulation model was utilized to ensure compatibility with the adsorption mechanism, in order to delve deeper into the intricacies of the adsorption process and gain a more comprehensive understanding of its underlying mechanisms and behavior. In conclusion, the prepared hydrogel beads proved to be an effective adsorbent for efficiently removing copper ions, making them a promising solution for addressing Cu(II) ion pollution. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

19 pages, 2702 KB  
Article
Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Bungarus multicinctus: Simulated Gastrointestinal Digestion, Identification and Antihypertensive Mechanism
by Yingying Ren, Han He, Yubin Cai, Shuyan Han, Ayzohra Ablat, Qiang Yin and Dandan Mu
Pharmaceuticals 2026, 19(1), 96; https://doi.org/10.3390/ph19010096 - 4 Jan 2026
Viewed by 267
Abstract
Background/Objectives: Hypertension represents a leading contributor to cardiovascular disorders and premature mortality. Given the pervasive nature of adverse effects associated with current angiotensin-converting enzyme inhibitors (ACEIs), there is a significant interest in identifying novel bioactive lead compounds from natural sources. This study [...] Read more.
Background/Objectives: Hypertension represents a leading contributor to cardiovascular disorders and premature mortality. Given the pervasive nature of adverse effects associated with current angiotensin-converting enzyme inhibitors (ACEIs), there is a significant interest in identifying novel bioactive lead compounds from natural sources. This study identifies, for the first time, three novel angiotensin-converting enzyme (ACE) inhibitory peptides released from Bungarus multicinctus (BM) via simulated gastrointestinal digestion (SGD). Methods: Active fractions were enriched by ultrafiltration and subjected to stability assessment. The peptide sequences were then determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and bioinformatics tools, followed by chemical synthesis. Finally, the inhibitory mechanism was investigated using kinetic analysis and molecular docking. Results: The intestinal digest exhibited potent ACE inhibition, with the <5 kDa fraction achieving 79% inhibition at 1 mg/mL and demonstrating favorable stability under varying temperatures, pH, and ionic strengths. Molecular docking revealed strong binding (affinity < −9.9 kcal/mol) of the peptides PPSPPRW, WGFTKF, and PSLFPPRL to key ACE residues—Tyr523, His513, and Arg522—via hydrogen and hydrophobic interactions. Enzyme kinetics characterized PPSPPRW and WGFTKF as competitive inhibitors, and PSLFPPRL as mixed type. The peptides demonstrated acceptable cell viability at lower concentrations, establishing a preliminary safety window for therapeutic application. Conclusions: These findings establish BM as a valuable source of stable, bioactive ACE-inhibitory peptides (ACEIPs) acting as promising lead compounds for antihypertensive therapies. Full article
Show Figures

Figure 1

32 pages, 3408 KB  
Review
Weaving the Future: The Role of Novel Fibres and Molecular Traceability in Circular Textiles
by Sofia Pereira de Sousa, Marta Nunes da Silva, Carlos Braga and Marta W. Vasconcelos
Appl. Sci. 2026, 16(1), 497; https://doi.org/10.3390/app16010497 - 4 Jan 2026
Viewed by 469
Abstract
The textile sector provides essential goods, yet it remains environmentally and socially intensive, driven by high water use, pesticide dependent monocropping, chemical pollution during processing, and growing waste streams. This review examines credible pathways to sustainability by integrating emerging plant-based fibres from hemp, [...] Read more.
The textile sector provides essential goods, yet it remains environmentally and socially intensive, driven by high water use, pesticide dependent monocropping, chemical pollution during processing, and growing waste streams. This review examines credible pathways to sustainability by integrating emerging plant-based fibres from hemp, abaca, stinging nettle, and pineapple leaf fibre. These underutilised crops combine favourable agronomic profiles with competitive mechanical performance and are gaining momentum as the demand for demonstrably sustainable textiles increases. However, conventional fibre identification methods, including microscopy and spectroscopy, often lose reliability after wet processing and in blended fabrics, creating opportunities for mislabelling, greenwashing, and weak certification. We synthesise how advanced molecular approaches, including DNA fingerprinting, species-specific assays, and metagenomic tools, can support the authentication of fibre identity and provenance and enable linkage to Digital Product Passports. We also critically assess environmental Life Cycle Assessment (LCA) and social assessment frameworks, including S-LCA and SO-LCA, as complementary methodologies to quantify climate burden, water use, labour conditions, and supply chain risks. We argue that aligning fibre innovation with molecular traceability and harmonised life cycle evidence is essential to replace generic sustainability claims with verifiable metrics, strengthen policy and certification, and accelerate transparent, circular, and socially responsible textile value chains. Key research priorities include validated marker panels and reference libraries for non-cotton fibres, expanded region-specific LCA inventories and end-of-life scenarios, scalable fibre-to-fibre recycling routes, and practical operationalisation of SO-LCA across diverse enterprises. Full article
Show Figures

Figure 1

18 pages, 11731 KB  
Article
Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner
by Yichong Lou, Ghulam Mohi Ud Din, Zuochao Yu, Yong He, Shixing Wang, Wubin Weng and Zhihua Wang
Processes 2026, 14(1), 163; https://doi.org/10.3390/pr14010163 - 3 Jan 2026
Viewed by 370
Abstract
Ammonia–coal co-firing is emerging as a promising technological pathway to reduce carbon production during coal-fired power generation. However, the coupling effects of the ammonia energy ratio (ENH3) and equivalence ratio on the ignition mechanism and emission characteristics—particularly under staged injection conditions—remain [...] Read more.
Ammonia–coal co-firing is emerging as a promising technological pathway to reduce carbon production during coal-fired power generation. However, the coupling effects of the ammonia energy ratio (ENH3) and equivalence ratio on the ignition mechanism and emission characteristics—particularly under staged injection conditions—remain insufficiently understood. This study investigates these characteristics in a laboratory-scale furnace. Spontaneous chemiluminescence imaging and flue gas analysis were employed to decouple the effects of aerodynamic interactions and chemical kinetics. The experimental results reveal that the ammonia injection strategy is the critical factor governing coal ignition performance. Compared to the premixed mode, staged injection—which establishes an independent, high-temperature ammonia flame zone—provides a superior thermal environment and circumvents oxygen competition between the fuels, thereby markedly promoting coal ignition. At an ENH3 of 50%, the staged configuration reduces the ignition delay time of coal volatiles by a striking 60.93%. Within the staged configuration, increasing either the co-firing ratio or the overall equivalence ratio further enhances coal ignition. Analysis of pollutant emissions elucidates that the formation of NO, N2O, and NH3 is intimately linked to the local combustion conditions of ammonia. An excessively lean local equivalence ratio leads to incomplete ammonia combustion, thereby increasing N2O and NH3 slip. Full article
Show Figures

Figure 1

14 pages, 1148 KB  
Article
High-Capacity Adsorption of a Cationic Dye Using Alkali-Activated Geopolymers Derived from Agricultural Residues
by Claudia Alejandra Hernández-Escobar, América Susana Mares-García, Miguel Alonso Orozco-Alvarado, Alejandro Vega-Rios, Claudia Ivone Piñón-Balderrama, Anayansi Estrada-Monje and Erasto Armando Zaragoza-Contreras
Materials 2026, 19(1), 177; https://doi.org/10.3390/ma19010177 - 3 Jan 2026
Viewed by 331
Abstract
A geopolymer, derived from agricultural waste, was used as an efficient, sustainable, and low-cost adsorbent of methylene blue, a recurrent industrial dye contaminant. The geopolymer was synthesized via a standard alkali activation process using wheat husk ash calcinated at 1050 °C. Adsorption capabilities [...] Read more.
A geopolymer, derived from agricultural waste, was used as an efficient, sustainable, and low-cost adsorbent of methylene blue, a recurrent industrial dye contaminant. The geopolymer was synthesized via a standard alkali activation process using wheat husk ash calcinated at 1050 °C. Adsorption capabilities were evaluated through batch kinetic experiments. The removal efficiency was determined by ultraviolet–visible spectrophotometry, and the adsorption kinetics were fitted to various models. The geopolymer demonstrated a maximum adsorption capacity of 270.58 mg/g for methylene blue, achieving a removal efficiency of 85.20% under optimal conditions. Kinetic analysis confirmed that the adsorption process is best described by the pseudo-second-order model. This suggests that chemisorption, which involves chemical bonding or electron exchange between the dye and the negatively charged aluminosilicate structure of the geopolymer, is the rate-limiting mechanism. This demonstrates that geopolymers are effective and promising adsorbents, valorizing an agricultural waste stream into a functional material for the efficient treatment of dye-polluted wastewater. The competitive capacity and favorable chemisorption mechanism position the geopolymer as a promising material for the remediation of dye-contaminated industrial effluents. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Graphical abstract

33 pages, 5406 KB  
Article
Functionalized Core/Shell Gold-Palladium Bimetallic Nanoparticles in Transferrin-Targeted Dual-Drug Delivery in a Cervical Cancer Cell Model
by Lorenzo Lance David and Moganavelli Singh
Pharmaceuticals 2026, 19(1), 74; https://doi.org/10.3390/ph19010074 - 30 Dec 2025
Viewed by 324
Abstract
Background/Objectives: Research on noble metal nanoparticles (NPs) has increased over the past three decades, with advancements in synthesis techniques refining their physicochemical characteristics, including size, shape, and surface chemistry. Bimetallic NPs (BNPs) offer synergistic properties contributed by both metals. Gold (Au) and palladium [...] Read more.
Background/Objectives: Research on noble metal nanoparticles (NPs) has increased over the past three decades, with advancements in synthesis techniques refining their physicochemical characteristics, including size, shape, and surface chemistry. Bimetallic NPs (BNPs) offer synergistic properties contributed by both metals. Gold (Au) and palladium (Pd) NPs possess low toxicity, high biocompatibility and loading, ease of synthesis and surface modification. Doxorubicin (DOX) and 5-fluorouracil (5-FU) are potent chemotherapeutic drugs but are rapidly metabolised in the body, producing severe side effects, limiting their use. Hence, innovative strategies to mitigate this is needed. Methods: In this study, AuPd NPs in a core-shell formation were chemically synthesized. The AuPd NPs were conjugated to 5-FU and DOX-encapsulated CS complexes and decorated with the targeting moiety transferrin (Tf). Results: Transmission electron microscopy and nanoparticle tracking analysis confirmed that the BNPs were spherical, with an average size of 73.4 nm. Functionalized BNPs were able to encapsulate more than 70% of 5-FU and DOX, resulting in a controlled drug release profile at pH 4.2. Cytotoxicity levels in human cancer cells, HeLa (cervical carcinoma) and MCF-7 (breast adenocarcinoma), as well as in non-cancer HEK293 (embryonic kidney) cells, revealed that the Tf-targeted nanocomplexes were HeLa cell-specific, with no significant cytotoxicity in the HEK293 cells. Tf-mediated cellular uptake was confirmed by receptor competition studies in the HeLa cells. Apoptosis and oxidative stress analysis confirmed cell death by apoptosis, consistent with the action of 5-FU and DOX. Conclusions: This study highlighted the potential of this BNP-nanocomplex as a suitable vehicle for drug delivery. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Drug Delivery)
Show Figures

Graphical abstract

13 pages, 1101 KB  
Article
Circular Bioprocessing of Chlorella sp. Biomass via Wickerhamomyces sp. UFFS-CE-3.1.2 Fermentation for the Production of High-Value Enzymes, Glycerol, and Acetic Acid
by Vitória Dassoler Longo, Marcelli Powzum Amorim, Nair Mirely Freire Pinheiro Silveira, Isabely Sandi Baldasso, Emanuely Fagundes da Silva, Arielle Cristina Fornari, Sérgio L. Alves, Mateus Torres Nazari and Helen Treichel
Processes 2026, 14(1), 111; https://doi.org/10.3390/pr14010111 - 28 Dec 2025
Viewed by 324
Abstract
The transition to a circular economy and the pursuit of environmental sustainability are driving humanity to develop alternative technologies for producing a range of bioproducts. In this context, microbial-mediated fermentation processes have gained prominence. Although yeasts are well known for their ability to [...] Read more.
The transition to a circular economy and the pursuit of environmental sustainability are driving humanity to develop alternative technologies for producing a range of bioproducts. In this context, microbial-mediated fermentation processes have gained prominence. Although yeasts are well known for their ability to produce alcohols, they can also generate a wide range of value-added bioproducts. At the same time, microalgae emerge as an advantageous unconventional raw material, as their cultivation does not require arable land, thus avoiding competition with food production. To meet this demand, this study aimed to produce biocomposites through submerged fermentation using biomass from the microalgae Chlorella sp. Enzymatic hydrolysis was optimized using a 22 Central Composite Rotational Design (CCRD), with algal biomass and enzyme mass as independent variables. This step was followed by fermentation with the yeast Wickerhamomyces sp. UFFS-CE-3.1.2. The enzyme alpha amylase employed is of commercial origin, commonly used in the brewing industry, characterized by its easy accessibility and lower environmental impact compared to chemical hydrolysis methods. The results demonstrated that the combination of microalgae biomass with the enzyme preparation led to the production of several compounds of interest, such as highly active enzymes, mainly protease (560 U/mL), catalase (3381 U/mL), and peroxidase (277 U/mL), as well as other compounds, such as glycerol (32.5 g/L) and acetic acid (22.8 g/L). These products have wide industrial applications and a strong market demand, reinforcing the potential of the yeast–microalgae synergy for the sustainable production of high-value biocompounds, which represents a matrix of environmentally friendly products. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Figure 1

Back to TopTop