Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner
Abstract
1. Introduction
2. Experimental Methodology
2.1. Experimental Apparatus and Diagnostic Systems
2.2. Coal Properties and Experimental Conditions
3. Results and Discussion
3.1. Flame Morphology and Ignition Definition
3.1.1. Gas-Phase Methane–Ammonia Flame Morphology
3.1.2. Ammonia–Coal Flame Morphology Under Various Conditions
3.1.3. Ignition Definition
3.2. Effect of Ammonia Co-Firing Ratio on Coal Particle Ignition
3.3. Effect of Overall Equivalence Ratio on Coal Particle Ignition
3.4. Effects of Co-Firing Ratio and Equivalence Ratio on Flue Gas Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ENH3 | Ammonia co-firing ratio |
| Φtotal | Overall equivalence ratio |
| OH-PLIF | Planar Laser-Induced Fluorescence of OH radical |
| CFD | Computational Fluid Dynamics |
| SN | Swirl number |
| D | Diameter |
| ICCD | Intensified Charge-Coupled Device |
| X | Mole fraction of species |
| Φlocal | Local equivalence ratio |
References
- Elwardany, M.; Nassib, A.M.; Mohamed, H.A. Advancing Sustainable Thermal Power Generation: Insights from Recent Energy and Exergy Studies. Process Saf. Environ. Prot. 2024, 183, 617–644. [Google Scholar] [CrossRef]
- Fonseca, A.J.D.S.; Diniz, F.F.; Gehrke, C.S.; Nunes, A.M.M.; Santos Júnior, E.P.; Coelho Junior, L.M. Thermal Power Plants in the Energy Transition and Circular Economy: A Review. Sustain. Futures 2025, 10, 101302. [Google Scholar] [CrossRef]
- Aziz, M.; Juangsa, F.B.; Irhamna, A.R.; Irsyad, A.R.; Hariana, H.; Darmawan, A. Ammonia Utilization Technology for Thermal Power Generation: A Review. J. Energy Inst. 2023, 111, 101365. [Google Scholar] [CrossRef]
- Gürel, B.; Kurtuluş, K.; Yurdakul, S.; Karaca Dolgun, G.; Akman, R.; Önür, M.E.; Varol, M.; Keçebaş, A.; Gürbüz, H. Combustion of Chicken Manure and Turkish Lignite Mixtures in a Circulating Fluidized Bed. Renew. Sustain. Energy Rev. 2024, 189, 113960. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for Power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Mohi Ud Din, G.; Yu, Z.; Lou, Y.; He, Y.; Weng, W.; Wang, Z. Ammonia Cofiring with Coal for a Sustainable Green Power Generation: Progress and Outlook. Energy Fuels 2025, 39, 12407–12428. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Z.; Shao, W.; Wang, Z.; Liu, H.; Li, X.; Cui, D. The Present Situation, Challenges, and Prospects of the Application of Ammonia–Coal Co-Firing Technology in Power Plant Boilers. J. Energy Inst. 2024, 113, 101531. [Google Scholar] [CrossRef]
- Saif, A.G.H.; Mokheimer, E.M.A. Comprehensive Review on Ammonia Combustion Technologies: Combustion Characteristics, Potential of Hydrogen/Methane Additions, and Emerging Applications. Int. J. Hydrogen Energy 2025, 148, 149672. [Google Scholar] [CrossRef]
- Liu, Q.; Song, G.; Liu, Z.; Li, Y.; Dai, H.; Duan, L. Effects of Ammonia Blending on NO Formation Characteristics in the Primary Combustion Zone of a Coal-Fired Boiler. Fuel 2026, 406, 137189. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, J.; Li, D.; Zhu, Y.; Liu, L.; Sun, Z. Emission and Transformation of Various Pollutants during Coal-Ammonia Combustion in Fluidized Bed: CO/CO2/CxHy/NH3/NOx/SO2/Hg. J. Energy Inst. 2025, 123, 102257. [Google Scholar] [CrossRef]
- Pan, W.; Yao, N.; Chen, Y.; Kang, L. Numerical Investigation of NOx Emission Characteristics in Air-Staged Combustion System Fueled by Premixed Ammonia/Methane. J. Energy Inst. 2024, 117, 101857. [Google Scholar] [CrossRef]
- Zha, X.; Zhang, Z.; Zhao, Z.; Yang, L.; Mao, W.; Lai, G.; Luo, C.; Zhang, L. The Relationship between the Moderate or Intense Low Oxygen Dilution (MILD) Regime and NO Formation in the Co-Combustion of NH3 with Bituminous Coal. J. Energy Inst. 2025, 121, 102156. [Google Scholar] [CrossRef]
- Wang, G.; Guiberti, T.F.; Cardona, S.; Jimenez, C.A.; Roberts, W.L. Effects of Residence Time on the NOx Emissions of Premixed Ammonia-Methane-Air Swirling Flames at Elevated Pressure. Proc. Combust. Inst. 2023, 39, 4277–4288. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, Y.; Chen, G.; Peng, A. An Observation of the Ignition Behavior of Pulverized Coal Particles during Co-Combustion with Ammonia under the Well-Controlled Co-Flow Conditions. Fuel 2025, 400, 135660. [Google Scholar] [CrossRef]
- Ma, P.; Huang, Q.; Wu, Z.; Lyu, J.; Li, S. Optical Diagnostics on Coal Ignition and Gas-Phase Combustion in Co-Firing Ammonia with Pulverized Coal on a Two-Stage Flat Flame Burner. Proc. Combust. Inst. 2023, 39, 3457–3466. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; He, Y.; Weng, W.; Cen, K. Ignition Characteristics of Single Coal Particles under Ammonia Co-Firing Conditions. Combust. Flame 2024, 263, 113385. [Google Scholar] [CrossRef]
- Xu, M.; Liu, X.; Xu, Y.; Zhang, A.; Xu, M. A Comparative Investigation on Flame Characteristics and Temperature Distribution in Ammonia and Hydrogen Co-Firing with Coal Combustion. Int. J. Hydrogen Energy 2025, 183, 151851. [Google Scholar] [CrossRef]
- Chae, T.; Sim, W.; Lee, J.W.; Yang, W.; Baek, S.; Park, K. An Experimental Study on Optimization of Ammonia Co-Firing in an 80kWth Pulverized Coal Combustion System. Fuel 2025, 380, 132740. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Weng, W.; Wang, Z. Numerical Simulation of Ammonia Combustion with Coal in a 135 MW Tangentially Fired Boiler. Fuel 2024, 370, 131831. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Zhu, R.; Tan, J.; He, Y.; Cen, K. Co-Firing Characteristics and Fuel-N Transformation of Ammonia/Pulverized Coal Binary Fuel. Fuel 2023, 337, 126857. [Google Scholar] [CrossRef]
- Ling, J.L.J.; Lee, H.E.; Park, H.J.; Lee, S.H. Performance Assessment and Emission Implications of an Ammonia Co-Combustion Power System with Various Coal Ranks. Appl. Therm. Eng. 2025, 278, 127177. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Liu, C.; Liu, H.; Sun, G.; Ding, N.; Lu, D.; Duan, L. Investigating Combustion Efficiency and NOx Emission Reduction in Fluidized Bed Ammonia-Coal Co-Firing. Combust. Flame 2024, 270, 113735. [Google Scholar] [CrossRef]
- Hadi, K.; Ichimura, R.; Hashimoto, G.; Xia, Y.; Hashimoto, N.; Fujita, O. Effect of Fuel Ratio of Coal on the Turbulent Flame Speed of Ammonia/Coal Particle Cloud Co-Combustion at Atmospheric Pressure. Proc. Combust. Inst. 2021, 38, 4131–4139. [Google Scholar] [CrossRef]
- Cui, M.; Liang, X.; Di, Y.; Niu, F.; Wang, S. Study on the Effect of Ammonia Mixing Ratio on Process of Ammonia and Coal Co-Combustion. J. Energy Inst. 2025, 120, 102040. [Google Scholar] [CrossRef]
- Cui, B.; Wang, X.; Yu, S.; Zhang, K.; Zhang, Y.; Ruan, R.; Wang, X.; Tan, H. Assisting Denitrification and Strengthening Combustion by Using Ammonia/Coal Binary Fuel Gasification-Combustion: Effects of Injecting Position and Air Distribution. Energy 2024, 312, 133609. [Google Scholar] [CrossRef]
- Xia, Y.; Hadi, K.; Hashimoto, G.; Hashimoto, N.; Fujita, O. Effect of Ammonia/Oxygen/Nitrogen Equivalence Ratio on Spherical Turbulent Flame Propagation of Pulverized Coal/Ammonia Co-Combustion. Proc. Combust. Inst. 2021, 38, 4043–4052. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; He, Y.; Weng, W.; Liu, S.; Wang, Z. Ignition and Combustion Characteristics of Ammonia-Coal Co-Firing in a Tubular Dual Swirl Burner under Different Co-Firing Conditions. Fuel 2026, 404, 136224. [Google Scholar] [CrossRef]
- Vignat, G.; Durox, D.; Candel, S. The Suitability of Different Swirl Number Definitions for Describing Swirl Flows: Accurate, Common and (over-) Simplified Formulations. Prog. Energy Combust. Sci. 2022, 89, 100969. [Google Scholar] [CrossRef]
- Bennett, G.F. Air Pollution Control: A Design Approach, 3rd Edition: C. David Cooper and F.C. Alley (Eds.), Waveland Press, Prospect Heights, IL, 2002, 738 pp., US$ 74.95, ISBN 1-57766-218-0. J. Hazard. Mater. 2003, 96, 342–344. [Google Scholar] [CrossRef]
- Jiang, L.; Su, H. Experimental Study on Chemiluminescence Characteristics of Ammonia/Methane Partially Premixed Swirling Flames. J. Energy Inst. 2026, 124, 102336. [Google Scholar] [CrossRef]
- Xu, K.; Wu, Y.; Wang, Z.; Yang, Y.; Zhang, H. Experimental Study on Ignition Behavior of Pulverized Coal Particle Clouds in a Turbulent Jet. Fuel 2016, 167, 218–225. [Google Scholar] [CrossRef]
- Liu, Y.; Geier, M.; Molina, A.; Shaddix, C.R. Pulverized Coal Stream Ignition Delay under Conventional and Oxy-Fuel Combustion Conditions. Int. J. Greenh. Gas Control 2011, 5, S36–S46. [Google Scholar] [CrossRef]
- Jeon, M.; Lee, E.; Kim, M.; Jegal, H.; Park, S.; Chi, J.H.; Baek, S.; Lee, J.; Keel, S.-I. Nitric Oxide (NO) and Nitrous Oxide (N2O) Emissions during Selective Non-Catalytic Reduction and Selective Catalytic Reduction Processes in a Pulverized Coal/Ammonia Co-Fired Boiler. J. Environ. Chem. Eng. 2023, 11, 109398. [Google Scholar] [CrossRef]
- Ma, C.; Cui, B.; Du, Y.; Yu, Z.; Du, J.; Wang, Y. NOx Formation in Pulverized Coal Co-Firing with Ammonia and Hydrogen: Effects of Fuel Properties and Air-Staging. J. Energy Inst. 2026, 124, 102409. [Google Scholar] [CrossRef]












| Reference | Burner Configuration | Key Diagnostics/Focus |
|---|---|---|
| Yang et al. [14] | Hencken Burner (Co-flow) | Backlight illumination; flame morphology |
| Ma et al. [15] | Two-Stage Flat Flame Burner | OH-PLIF; gas-phase reaction |
| Chen et al. [16] | Hencken Burner (Single Particle) | CH*/Char radiation; ignition delay |
| Xu et al. [17] | Hencken Burner (Jet Flow) | High-speed imaging; temperature distribution |
| Chae et al. [18] | 80 kWth Pulverized Coal Furnace | Heat transfer; NOx emissions; side-wall injection |
| Wang et al. [19] | 135 MW Tangentially Fired Boiler (CFD) | Temperature field; NOx emission; injection modes |
| Chen et al. [20] | Drop-Tube Furnace (6 kW) | Exhaust gas analysis (Fuel-N path) |
| Ling et al. [21] | 1 GW Power Cycle Process Simulation | System efficiency; thermodynamic performance |
| Li et al. [22] | Fluidized Bed Reactor | NO emissions; ammonia escape |
| Hadi et al. [23] | Constant Volume Chamber (Fan-Stirred) | Turbulent flame speed propagation |
| Cui et al. [24] | Drop-Tube Furnace (Laminar) | Flue gas analysis; macroscopic ignition |
| Cui et al. [25] | Gasification-Combustion Rig | SNCR window; denitrification efficiency |
| Xia et al. [26] | Constant Volume Chamber (Fan-Stirred) | Schlieren imaging; turbulent flame speed |
| Yu et al. [27] | Dual-Swirl Burner | OH-PLIF; flame imaging |
| This work | Dual-Swirl Burner (Turbulent) | NH2*, CH* and char chemiluminescence; NOx emission and ammonia escape |
| Proximate Analysis (wt%) | Qnet,ad (MJ/kg) | Ultimate Analysis (wt%) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Cad | Had | Oad | Nad | Sad | |
| 1.34 | 34.10 | 33.28 | 31.28 | 17.47 | 43.98 | 3.29 | 15.56 | 0.98 | 0.75 |
| Operation Parameters | Unit | Value | |
|---|---|---|---|
| Methane flow rate | L/min | 3.44 | |
| Center pipe velocity (Vcenter) | m/s | 20 | |
| Coal feeding rate | g/h | 582.6/524.4/495/466.2/436.8/408/378.6/349.8/291.6 | |
| Ammonia co-firing ratio (ENH3) | % | 0/10/15/20/25/30/35/40/50 | |
| Overall equivalence ratio (Φtotal) | 0.95/0.91/0.87/0.77/0.71/0.67/0.63/0.59 | ||
| Ammonia–coal co-firing mode | Premixed/Staged | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lou, Y.; Din, G.M.U.; Yu, Z.; He, Y.; Wang, S.; Weng, W.; Wang, Z. Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner. Processes 2026, 14, 163. https://doi.org/10.3390/pr14010163
Lou Y, Din GMU, Yu Z, He Y, Wang S, Weng W, Wang Z. Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner. Processes. 2026; 14(1):163. https://doi.org/10.3390/pr14010163
Chicago/Turabian StyleLou, Yichong, Ghulam Mohi Ud Din, Zuochao Yu, Yong He, Shixing Wang, Wubin Weng, and Zhihua Wang. 2026. "Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner" Processes 14, no. 1: 163. https://doi.org/10.3390/pr14010163
APA StyleLou, Y., Din, G. M. U., Yu, Z., He, Y., Wang, S., Weng, W., & Wang, Z. (2026). Ignition and Emission Study of an Ammonia–Coal Co-Firing Flame in a Lab-Scale Dual-Swirl Burner. Processes, 14(1), 163. https://doi.org/10.3390/pr14010163

