Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (825)

Search Parameters:
Keywords = changes in stand structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 590 KB  
Article
Behaviour Change for Physical Activity Is Feasible and Effective in Women Living with Metastatic Breast Cancer: A Pilot Two-Arm Randomised Trial
by Mark Liu, Sharon Kilbreath, Jasmine Yee, Jane Beith and Elizabeth Dylke
Cancers 2026, 18(2), 338; https://doi.org/10.3390/cancers18020338 - 21 Jan 2026
Abstract
Background/Objectives: Physical activity benefits women with metastatic breast cancer. Past trials are typically well-resourced and supervised, but home-based interventions may be preferable and more accessible. This pilot trial evaluated the feasibility and preliminary efficacy of a remotely delivered behaviour change intervention aiming to [...] Read more.
Background/Objectives: Physical activity benefits women with metastatic breast cancer. Past trials are typically well-resourced and supervised, but home-based interventions may be preferable and more accessible. This pilot trial evaluated the feasibility and preliminary efficacy of a remotely delivered behaviour change intervention aiming to increase physical activity for women with metastatic breast cancer. Methods: A 12-week, two-arm trial involved 20 women with metastatic breast cancer randomised 1:1 to a generic recommendation group or behaviour change group. Both groups received a physical activity recommendation, Fitbit® watch, diary, and nine phone/video call sessions. The behaviour change group received individualised advice around physical activity benefits, motivation, barriers, and social support; the generic recommendation group completed a recurring symptom questionnaire. Feasibility outcomes were recruitment, retention and adherence rates. Acceptability was evaluated with a structured interview at trial completion. Preliminary efficacy outcomes included 5-day Actigraph wear, 6 min walk distance, 30 s sit-to-stands, and questionnaires for self-reported physical activity, quality-of-life, fatigue, behavioural factors, and patient-specific function. Results: Recruitment, retention, and adherence rates were 63% (n = 20/32), 80% (n = 16/20), and 76% (137/180 sessions), respectively. Participants across both groups reported that participation was acceptable, and their behaviour change was perceived as sustainable. Preliminary change scores for efficacy measures favoured the behaviour change group, except some quality-of-life and behavioural factor subscales. Conclusions: Participants were receptive to the trial, and feasibility and efficacy measures were positive. This indicates that a behaviour change intervention for unsupervised physical activity is acceptable and can be beneficial to women with metastatic breast cancer, warranting further exploration. Full article
Show Figures

Figure 1

17 pages, 2514 KB  
Article
Parsing the Relative Contributions of Leaf and Canopy Traits in Airborne Spectrometer Measurements
by Franklin B. Sullivan, Jack H. Hastings, Scott V. Ollinger, Andrew Ouimette, Andrew D. Richardson and Michael Palace
Remote Sens. 2026, 18(2), 355; https://doi.org/10.3390/rs18020355 - 21 Jan 2026
Abstract
Forest canopy near-infrared reflectance and mass-based canopy nitrogen concentration (canopy %N) have been shown to be positively correlated. While the mechanisms underpinning this relationship remain unresolved, the broad range of wavelengths involved points to structural properties that influence scattering and covary with %N. [...] Read more.
Forest canopy near-infrared reflectance and mass-based canopy nitrogen concentration (canopy %N) have been shown to be positively correlated. While the mechanisms underpinning this relationship remain unresolved, the broad range of wavelengths involved points to structural properties that influence scattering and covary with %N. Despite this, efforts that have focused on commonly measured structural properties such as leaf area index (LAI) have failed to identify a causal mechanism. Here, we sought to understand how lidar-derived canopy traits related to additional properties of foliar arrangement and structural complexity modulate the effects of leaf spectra and leaf area index (LAI) on canopy reflectance. We developed a leaf layer spectra model to explore how canopy reflectance would change if complex foliage arrangements were removed, compressing the canopy into optically dense, uniform stacked layers while maintaining the same leaf area index. Model results showed that LAI-weighted leaf reflectance saturates at a leaf area index of approximately two for needleleaf species and four for broadleaf species. When upscaled to estimate plot-level canopy reflectance in the absence of structural complexity (NIRrLAI), results showed a strong positive relationship with canopy %N (r2 = 0.86), despite a negative relationship for individual leaves or “big-leaf” canopies with an LAI of one (NIRrL, r2 = 0.78). This result implies that the relationship between canopy near-infrared reflectance and canopy %N results from the integrated effects of canopy complexity acting on differences in leaf-level optical properties. We introduced an index of relative reflectance (IRr) that shows that the relative contribution of structural complexity to canopy near-infrared reflectance (NIRrC) is related to canopy %N (r2 = 0.55), with a three-fold reduction from potential canopy near-infrared reflectance observed in stands with low %N compared to a two-fold reduction in stands with high %N. These findings support the hypothesis that the correlation between canopy %N and canopy reflectance is the result of interactions between leaf traits and canopy structural complexity. Full article
Show Figures

Figure 1

20 pages, 3451 KB  
Article
Biodiversity Hotspots in Peri-Urban Areas: The Case of the Old-Growth Forest Kouri, Thessaloniki, Northern Greece
by Ganatsas Petros, Christidou Maria-Iiada, Tsakaldimi Marianthi and Oikonomakis Nikolaos
Sustainability 2026, 18(2), 749; https://doi.org/10.3390/su18020749 - 12 Jan 2026
Viewed by 118
Abstract
In the context of the ongoing climate crisis, the health and sustainability of forest ecosystems in peri-urban areas play a crucial role in alleviating the adverse impacts of climate change on urban populations, particularly in cities with limited green spaces. This study explores [...] Read more.
In the context of the ongoing climate crisis, the health and sustainability of forest ecosystems in peri-urban areas play a crucial role in alleviating the adverse impacts of climate change on urban populations, particularly in cities with limited green spaces. This study explores the biodiversity and ecological values of an old-growth forest in the peri-urban area, Thessaloniki, northern Greece, the Kouri Forest. These types of forest ecosystems, except for their high ecological values, provide a lot of benefits to the city residents and the surrounding areas, and to achieve that they should have appropriate composition, structure and function to be able to provide high-level ecosystem services. The research was based on collecting analytical field data, including field sampling plots, and a series of tree cores for tree age determination and tree growth analysis. Data analysis demonstrates the unique characteristics of this forest, which was found to be an old-growth forest dominated by deciduous oak species, aged over 180 years. The high biodiversity of the forest and the rich composition and the multistorey stand structure, in combination with the long age of the trees, suggests that the forest is an old-growth (ancient) forest, and set the forest as an important biogenetic reserve, despite its small area, proximity to the city of Thessaloniki, and the pressures subjected. Accordingly, special management measures are suggested to aim at the sustainable use of peri-urban natural resources. Full article
Show Figures

Figure 1

19 pages, 776 KB  
Opinion
Climate-Informed Water Allocation in Central Asia: Leveraging Decision Support System
by Jingshui Huang, Zakaria Bashiri and Markus Disse
Water 2026, 18(2), 161; https://doi.org/10.3390/w18020161 - 8 Jan 2026
Viewed by 187
Abstract
As the impacts of climate change intensify, water resource conflicts are escalating globally, particularly in regions with uneven water distribution, such as Central Asia. Long-standing disputes over water allocation persist between Kyrgyzstan and Uzbekistan. This paper aims to examine the conflicts and challenges [...] Read more.
As the impacts of climate change intensify, water resource conflicts are escalating globally, particularly in regions with uneven water distribution, such as Central Asia. Long-standing disputes over water allocation persist between Kyrgyzstan and Uzbekistan. This paper aims to examine the conflicts and challenges in water allocation between the two countries and explore the potential of Decision Support Systems (DSSs) as a viable solution. The paper begins by reviewing the historical evolution of water allocation in Central Asia, analyzing upstream–downstream disputes and notable cooperation efforts, with a focus on key water agreements. It then outlines the definitions, development, and classifications of DSSs in the context of water allocation and presents two illustrative case studies—the Tarim River Basin in Xinjiang, China, and the Nile River Basin in Africa. These cases demonstrate the applicability of DSSs in water-scarce regions with similar socio-ecological dynamics and complex multi-country, cross-sectoral water demands. Building on these insights, the paper analyzes the key challenges to implementing DSSs for transboundary water allocation in Central Asia, including limited data availability and sharing, insufficient technical capacity, chronic funding shortages, socio-political complexities, climate change impacts, and the inherent difficulty of modeling complex systems. In response, a set of targeted pragmatic recommendations is proposed. While acknowledging its limitations, the paper argues that establishing a structured, system-based decision-making framework—namely DSSs—can help stakeholders enhance climate-informed strategic planning and foster cooperation, ultimately contributing to more equitable and sustainable water resource allocation in the region. Full article
(This article belongs to the Special Issue Advances in Water Management and Water Policy Research, 2nd Edition)
Show Figures

Figure 1

30 pages, 10261 KB  
Article
Traditional Cultivation and Land-Use Change Under the Balaton Law: Impacts on Vineyards and Garden Landscapes
by Krisztina Filepné Kovács, Virág Kutnyánszky, Zhen Shi, Zsolt Miklós Szilvácsku, László Kollányi and Edina Klára Dancsokné Fóris
Land 2026, 15(1), 106; https://doi.org/10.3390/land15010106 - 6 Jan 2026
Viewed by 246
Abstract
The Balaton region is Hungary’s most important recreational area, known for Central Europe’s largest freshwater lake and its traditional vineyard and horticultural landscapes. Since 1990, vineyard and orchard abandonment and intensified shoreline urbanization have increasingly threatened both landscape character and ecological balance. This [...] Read more.
The Balaton region is Hungary’s most important recreational area, known for Central Europe’s largest freshwater lake and its traditional vineyard and horticultural landscapes. Since 1990, vineyard and orchard abandonment and intensified shoreline urbanization have increasingly threatened both landscape character and ecological balance. This study analyses land-use changes in the Balaton hinterland and evaluates the effectiveness of regional land-use regulation between 1990 and 2018, with a focus on the 2000 Balaton Law (BKÜRT), which sought to preserve traditional land uses by permitting construction only where at least 80% of vineyard parcels remained cultivated. Spatial–temporal analysis was based on CORINE Land Cover (CLC) data from 1990 to 2018, supplemented by change layers from the Copernicus Land Monitoring Service. The CORINE Land Cover classification is a three-level hierarchical system (5 Level-1 groups, 15 Level-2 classes, and 44 Level-3 classes) developed by the EEA to provide standardized, satellite-based land cover information across Europe. Land cover was aggregated into major categories (using Level-1 and Level-2 classes) relevant to the Hungarian landscape. To address CLC limitations related to representing vineyards as relatively homogeneous units despite substantial differences in the density and scale of built structures, detailed case studies were conducted in three C1 vineyard zones—Alsóörs, Paloznak, and Szentantalfa—using historical aerial photographs, Google Earth imagery, and the Hungarian Ecosystem Map (NÖSZTÉP). Despite the restrictive regulatory framework, the CLC database showed that the share of vineyards in the vineyard regulation zone (C-1, C-2) decreased between 1990 and 2018 from 45.4% to 35.8% (the share of gardens and fruit plantations had changed from 9.7% to 15.5%). In the whole Balaton region, there was an approximately 18% decline in vineyard areas. Considering the M-2 horticultural zone, the garden coverage increased from 18.9% in 1990 (17.7% in 2000) to 30.5% (share of vineyards changed from 54.3% (54.6% in 2000) to 38.8%). At the regional level, gardens and fruit plantations had a smaller decrease (3.2%). Although overall trends were more favorable than at the national level, regulatory measures proved insufficient to prevent the conversion of vineyards and orchards in sensitive areas, particularly on slopes overlooking the lake, in proximity to tourist hubs, and in areas exposed to strong development pressure. By 2018, the C1 zone had expanded spatially but became less targeted, as the proportion of vineyards within it decreased. Boundary refinements failed to substantially improve regulatory precision or effectiveness. The case studies reveal a gradient of regulatory strictness reflecting differing landscape protection priorities and stages of vineyard transformation, with Alsóörs responding to long-standing, partly irreversible changes while attempting to slow further landscape alteration. To counter ongoing negative trends, more targeted and enforceable regulations are required, including a clearer separation of cultivated and recreational land uses, a maximum building size of 80 m2 for recreational properties, and a reassessment of vineyard zone boundaries to better reflect active cultivation and protect sensitive landscapes. Full article
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Linking Silvics to Policy: A Disconnect with Free-to-Grow Standards in Northeast British Columbia
by Christopher Hawkins and Christopher Maundrell
Forests 2026, 17(1), 21; https://doi.org/10.3390/f17010021 - 23 Dec 2025
Viewed by 222
Abstract
Northeast British Columbia (54–60° N latitude, 120–123° W longitude) has 10+ M ha of complex conifer–broadleaf forest, which is a unique forest type in the province. Current management practice is to remove competing broadleaf species to promote the growth of more commercially valued [...] Read more.
Northeast British Columbia (54–60° N latitude, 120–123° W longitude) has 10+ M ha of complex conifer–broadleaf forest, which is a unique forest type in the province. Current management practice is to remove competing broadleaf species to promote the growth of more commercially valued conifers. This approach ignores the species silvics and results in forest simplification, thus reducing species and structural diversity, habitat value, and overall stand resilience to future events such as climate change and wildfires. These practices also negatively impact traditional First Nation treaty rights. Three trials were established across the region in 5-to-18-year-old post-logging mixed species stands where broadleaves had not been removed. Competition-free radii of 0, 1, 2, and 4 m were established around white spruce (Picea glauca (Moench) Voss) crop trees. The objective was to investigate the impact of broadleaf (aspen Populus tremuloides Michx. or paper birch Betula papyrifera Marsh.) competition on crop tree growth with respect to the free-to-grow (FTG) standard. Except at extreme broadleaf densities (>10,000 SPH), crop tree DBH growth was not impacted when trials were established. After at least 11 growing seasons, except at the competition-free 4 m radius, DBH was not impacted by competition. Spruce DBH in the mixed stand at all radii was greater than the expected BC model projections for a pure spruce stand on these sites. Our findings suggest that the current FTG management approach in northeast BC only has a positive result if taken to an extreme. It has a low return on investment and reduces stand resilience and total productivity. An alternative forest management approach for the region is presented. Full article
Show Figures

Figure 1

30 pages, 730 KB  
Article
Implementing the Adkar Change Management Model to Enhance Sustainability Transitions in Romanian Swine Farms
by Florin Gheorghe Lup, Ramona Vasilica Bacter, Alina Emilia Maria Gherdan, Monica Angelica Dodu, Andra Lazar, Anca Chereji and Alexandra Ungureanu
Agriculture 2025, 15(24), 2588; https://doi.org/10.3390/agriculture15242588 - 15 Dec 2025
Viewed by 490
Abstract
Romania faces a double challenge in the swine production sector. On one hand, the European Union’s environmental agenda demands that member states drastically reduce both the carbon footprint and the use of antibiotics in animal husbandry by 2030. On the other hand, the [...] Read more.
Romania faces a double challenge in the swine production sector. On one hand, the European Union’s environmental agenda demands that member states drastically reduce both the carbon footprint and the use of antibiotics in animal husbandry by 2030. On the other hand, the Romanian swine industry still grapples with long-standing internal issues such as excessive fragmentation, a strong dependence on imported piglets and feed materials, and a clear shortage of modern management experience. This study set out to explore how the ADKAR model can serve as a structured approach to help commercial swine farms in Romania transition toward sustainability. To gather relevant data, researchers distributed a five-point Likert-scale questionnaire to 83 farm managers, out of the 361 officially registered commercial swine farms. The instrument was designed to assess how each farm positioned itself across the five ADKAR dimensions. The results revealed that most Romanian farm managers are highly aware of the need for change and show a generally positive attitude toward adopting sustainable practices. However, there remain considerable knowledge gaps and practical limitations, which continue to act as major barriers to effective implementation. The composite ADKAR-S Index, which measures the “sustainability maturity” of each farm, displayed a strong positive correlation with economic performance, particularly the profit margin (r ≈ 0.45, p < 0.001), and a significant negative correlation with antimicrobial use (r ≈ −0.50, p < 0.001). Simply put, farms that are better prepared for organizational transformation tend to perform better financially while also reducing their environmental footprint. The findings suggest that policy efforts should prioritize human capital development, especially through training programs and reinforcement systems such as continuous monitoring and staff incentives, to ensure that sustainable practices are not only adopted but also maintained in the long run. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 7370 KB  
Article
Hierarchical Deep Learning Framework for Mapping Honey-Producing Tree Species in Dense Forest Ecosystems Using Sentinel-2 Imagery
by Athanasios Antonopoulos, Tilemachos Moumouris, Vasileios Tsironis, Athena Psalta, Evangelia Arapostathi, Antonios Tsagkarakis, Panayiotis Trigas, Paschalis Harizanis and Konstantinos Karantzalos
Agronomy 2025, 15(12), 2858; https://doi.org/10.3390/agronomy15122858 - 12 Dec 2025
Viewed by 374
Abstract
The sustainability of apiculture within Mediterranean forest ecosystems is contingent upon the extent and health of melliferous tree habitats. This study outlines a five-year initiative (2020–2024) aimed at mapping and monitoring four principal honey-producing tree species—pine (Pinus halepensis and Pinus nigra), [...] Read more.
The sustainability of apiculture within Mediterranean forest ecosystems is contingent upon the extent and health of melliferous tree habitats. This study outlines a five-year initiative (2020–2024) aimed at mapping and monitoring four principal honey-producing tree species—pine (Pinus halepensis and Pinus nigra), Greek fir (Abies cephalonica), oak (Quercus ithaburensis subsp. macrolepis), and chestnut (Castanea sativa)—across Evia, Greece. This is achieved through the utilization of high-resolution Sentinel-2 satellite imagery in conjunction with a hierarchical deep learning framework. Distinct from prior vegetation mapping endeavors, this research introduces an innovative application of a hierarchical framework for species-level semantic segmentation of apicultural flora, employing a U-Net convolutional neural network to capture fine-scale spatial and temporal dynamics. The proposed framework first stratifies forests into broadleaf and coniferous types using Copernicus DLT data, and subsequently applies two specialized U-Net models trained on Sentinel-2 NDVI time series and DEM-derived topographic variables to (i) discriminate pine from fir within coniferous forests and (ii) distinguish oak from chestnut within broadleaf stands. This hierarchical decomposition reduces spectral confusion among structurally similar species and enables fine-scale semantic segmentation of apicultural flora. Our hierarchical framework achieves 92.1% overall accuracy, significantly outperforming traditional multiclass approaches (89.5%) and classical ML methods (76.9%). The results demonstrate the framework’s efficacy in accurately delineating species distributions, quantifying the ecological and economic impacts of the catastrophic 2021 forest fires, and projecting long-term habitat recovery trajectories. The integration of a novel hierarchical approach with Deep Learning-driven monitoring of climate- and disturbance-driven changes in honey-producing habitats marks a significant step towards more effective assessment and management of four major beekeeping tree species. These findings highlight the significance of such methodologies in guiding conservation, restoration, and adaptive management strategies, ultimately supporting resilient apiculture and safeguarding ecosystem services in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Digital Twins in Precision Agriculture)
Show Figures

Figure 1

19 pages, 5503 KB  
Article
Response Design and Experimental Analysis of Marine Riser Buoy Observation System Based on Fiber Optic Sensing Under South China Sea Climatic Conditions
by Lei Liang, Shuhan Long, Xianyu Lai, Yixuan Cui and Jian Gu
J. Mar. Sci. Eng. 2025, 13(12), 2356; https://doi.org/10.3390/jmse13122356 - 10 Dec 2025
Viewed by 457
Abstract
Marine risers, critical structures connecting underwater production systems and surface floating platforms, stand freely in water and endure extremely complex marine environmental loads. To meet the multi-parameter observation demand for their overall state, a fiber-optic sensing-based marine riser buoy observation system was developed. [...] Read more.
Marine risers, critical structures connecting underwater production systems and surface floating platforms, stand freely in water and endure extremely complex marine environmental loads. To meet the multi-parameter observation demand for their overall state, a fiber-optic sensing-based marine riser buoy observation system was developed. Unlike traditional point-type and offline monitoring systems, it integrates marine buoys with sensing submarine cables to achieve long-term real-time online monitoring of risers’ overall state via fiber-optic sensing technology. Comprising two main modules (buoy monitoring module and fiber-optic sensing module), the buoy’s stability was verified through theoretical derivation, simulation, and stability curve plotting. Frequency domain analysis of buoy loads and motion responses, along with calculation of motion response amplitude operators (RAOs) at various incident angles, showed the system avoids wave periods in the South China Sea (no resonance), ensuring structural safety for offshore operations. A 7-day marine test of the prototype was conducted in Yazhou Bay, Hainan Province, to monitor real-time temperature and strain data of the riser in the test sea area. The sensing submarine cable accurately responded to temperature changes at different depths with high stability and precision; using the Frenet-based 3D curve reconstruction algorithm, pipeline shape was inverted from the monitored strain data, enabling real-time pipeline monitoring. During the test, the buoy and fiber-optic sensing module operated stably. This marine test confirms the buoy observation system’s reasonable design parameters and feasible scheme, applicable to temperature and deformation monitoring of marine risers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 5238 KB  
Article
Stand Structure and Successional Pathway in an Artificial Hybrid Pine (Pinus × rigitaeda) Plantation from a Temperate Monsoon Region
by Woosung Kim, Ara Seol and Suyoung Jung
Forests 2025, 16(12), 1840; https://doi.org/10.3390/f16121840 - 10 Dec 2025
Viewed by 306
Abstract
Artificial hybrid pine (Pinus × rigitaeda) plantations, widely established in Northeast Asia for reforestation and timber production, have reached maturity, necessitating an evaluation of their ecological sustainability and successional dynamics. Although numerous studies have examined succession in pure Pinus rigida or [...] Read more.
Artificial hybrid pine (Pinus × rigitaeda) plantations, widely established in Northeast Asia for reforestation and timber production, have reached maturity, necessitating an evaluation of their ecological sustainability and successional dynamics. Although numerous studies have examined succession in pure Pinus rigida or Pinus densiflora stands, the long-term structural transition and regeneration potential of hybrid P. × rigitaeda plantations remain poorly understood. This study quantitatively assessed the successional stage and potential transition pathways of P. × rigitaeda stands using an integrated analytical framework combining vegetation classification (TWINSPAN), ordination (NMDS), successional index, survival analysis (Weibull model), and growth–environment modeling (GAM). Multi-layer vegetation data were analyzed to evaluate compositional changes, structural attributes, and nonlinear environmental responses. The results revealed that the dominance of P. × rigitaeda declined markedly while native deciduous species increased in lower strata. The Weibull survival model (k = 1.3) indicated accelerating mortality with stand aging, and the successional index showed the highest value (0.4) for Castanea crenata, followed by other Quercus species, confirming an ongoing shift toward hardwood dominance. GAM analysis confirmed that growth stability was influenced by stand age and precipitation. These findings demonstrate that P. × rigitaeda plantations are not merely artificial production forests but function as self-organizing systems facilitating natural forest recovery. In this respect, the hybrid pine plantation can be interpreted as a spontaneous ecological experiment, highlighting the restoration value of artificial hybrids as transitional stages bridging artificial afforestation and natural forest succession in temperate monsoon regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

41 pages, 11699 KB  
Article
Knowledge, Materials, and Construction Techniques as Guiding Factors in Conservation Interventions: An Interpretative Approach for the House of Arianna in the Archaeological Park of Pompeii
by Renata Picone, Valentina Russo, Lia Romano, Ersilia Fiore and Sara Iaccarino
Heritage 2025, 8(12), 508; https://doi.org/10.3390/heritage8120508 - 4 Dec 2025
Viewed by 724
Abstract
This paper presents a knowledge-based and interpretative model for the conservation of the House of Arianna, located in the Archaeological Park of Pompeii, developed within the CHANGES project, Spoke 6—History, Conservation and Restoration of Cultural Heritage. The research focused on two [...] Read more.
This paper presents a knowledge-based and interpretative model for the conservation of the House of Arianna, located in the Archaeological Park of Pompeii, developed within the CHANGES project, Spoke 6—History, Conservation and Restoration of Cultural Heritage. The research focused on two critical components of the site: the free-standing peristyle columns and the mosaic and frescoed surfaces preserved in situ. This workflow yielded a high-resolution digital model, analytical condition maps, and diagnostic datasets that directly inform conservation decisions. The results show that the columns exhibit internal discontinuities and weaknesses at their joints, a condition linked to heterogeneous construction techniques which increases the risk of drum slippage under wind and seismic loading. The mosaics display a marked loss of tesserae in exposed sectors over recent years, driven by moisture ingress, biological growth and mechanical stress. These findings support the adoption of low-impact, reversible measures, embedded within a prevention-first strategy based on planned conservation. The study formalizes a replicable methodology that aligns diagnostics, monitoring and conservation planning. By linking ‘skin’ and ‘structure’ within a unified interpretative matrix, the approach enhances both structural safety and material legibility. The workflow proposed here offers transferable guidance for the sustainable preservation and inclusive interpretation of exposed archaeological ensembles in the Vesuvian context and beyond. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

15 pages, 2213 KB  
Article
Physicochemical Properties and Consumer Appeal of High Pressure Structured Pea and Chickpea Isolate-Enriched Whole Concord Grape Gels
by Viral Shukla, Yichen Yang and Olga I. Padilla-Zakour
Gels 2025, 11(12), 972; https://doi.org/10.3390/gels11120972 - 2 Dec 2025
Viewed by 308
Abstract
Protein-enriched fruit gels, such as spoonable sauces and cuttable gels, can meet consumers’ desire for high protein/fiber value-added health foods. High pressure processing (HPP) is a nonthermal pasteurizing method that has shown additional usage as a novel structuring method for gels by affecting [...] Read more.
Protein-enriched fruit gels, such as spoonable sauces and cuttable gels, can meet consumers’ desire for high protein/fiber value-added health foods. High pressure processing (HPP) is a nonthermal pasteurizing method that has shown additional usage as a novel structuring method for gels by affecting protein–protein interactions. This work studied HPP (575 MPa, 3 min, 5 °C) compared to heat (85–90 °C, 3–10 min) pasteurization as a method to produce novel fruit gels from whole Concord grapes enriched with 4, 6, and 8% (w/w) chickpea and pea protein. Physicochemical and rheological analyses were conducted, as well as sensory evaluation of a model gel. Heat-treated gels produced spoonable high viscosity gels compared to free standing gels produced through HPP. Chickpea protein-enriched samples exhibited a greater change with an increase in heat processing due to non-protein constituents compared to pea protein. Sensory analysis showed a desire for added nutritional value, though flavor was ultimately the deciding factor in preference, with heat-treated gels achieving higher liking scores compared to a HPP counterpart. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Graphical abstract

14 pages, 2034 KB  
Article
Assessment of the Crown Condition of Oak (Quercus) in Poland—Analysis of Defoliation Trends and Regeneration in the Years 2015–2024
by Grzegorz Zajączkowski, Piotr Budniak, Piotr Mroczek, Wojciech Gil and Pawel Przybylski
Forests 2025, 16(12), 1807; https://doi.org/10.3390/f16121807 - 2 Dec 2025
Viewed by 385
Abstract
Long-term monitoring of tree crown condition is essential for assessing forest resilience under increasing climatic variability. This study presents a comprehensive evaluation of oak (Quercus spp.) defoliation trends in Poland from 2015 to 2024, based on national forest health monitoring data. Mean [...] Read more.
Long-term monitoring of tree crown condition is essential for assessing forest resilience under increasing climatic variability. This study presents a comprehensive evaluation of oak (Quercus spp.) defoliation trends in Poland from 2015 to 2024, based on national forest health monitoring data. Mean defoliation remained relatively stable until 2018, followed by a significant increase in 2019 (+5.1 percentage points; p < 0.001), coinciding with a major drought event across Central Europe. In subsequent years, defoliation gradually decreased and stabilised, indicating partial canopy recovery. Segmented regression and spline models revealed a consistent breakpoint in 2019 across all age classes, with the most severe crown damage recorded in stands older than 100 years. Younger stands showed lower defoliation levels and higher regenerative capacity. A nonlinear relationship between defoliation and growing-season precipitation was also identified, showing that when rainfall fell below 40 mm, canopy loss exceeded 30%. The results confirm that oak defoliation reflects both short-term climatic stress and long-term structural changes. Integrating monitoring data with climatic analyses and statistical modelling improves the detection of stress-related drivers and the assessment of recovery processes. The combined use of these approaches supports adaptive forest management strategies, including the promotion of mixed-species and multi-aged stands, improvement of soil nutrient conditions, and targeted monitoring of drought-sensitive age classes, thereby enhancing the resilience of oak ecosystems to climate change. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

30 pages, 1826 KB  
Article
Unveiling the Scientific Knowledge Evolution: Carbon Capture (2007–2025)
by Kuei-Kuei Lai, Yu-Jin Hsu and Chih-Wen Hsiao
Appl. Syst. Innov. 2025, 8(6), 187; https://doi.org/10.3390/asi8060187 - 30 Nov 2025
Viewed by 565
Abstract
This study explores how research on carbon capture technologies (CCTs) has developed over time and shows how semantic text mining can improve the analysis of technology trajectories. Although CCTs are widely viewed as essential for net-zero transitions, the literature is still scattered across [...] Read more.
This study explores how research on carbon capture technologies (CCTs) has developed over time and shows how semantic text mining can improve the analysis of technology trajectories. Although CCTs are widely viewed as essential for net-zero transitions, the literature is still scattered across many subthemes, and links between engineering advances, infrastructure deployment, and policy design are often weak. Methods that rely mainly on citations or keyword frequencies tend to overlook contextual meaning and the subtle diffusion of ideas across these strands, making it difficult to reconstruct clear developmental pathways. To address this problem, we ask the following: How do CCT topics change over time? What evolutionary mechanisms drive these transitions? And which themes act as bridges between technical lineages? We first build a curated corpus using a PRISMA-based screening process. We then apply BERTopic, integrating Sentence-BERT embeddings with UMAP, HDBSCAN, and class-based TF-IDF, to identify and label coherent semantic topics. Topic evolution is modeled through a PCC-weighted, top-K filtered network, where cross-year connections are categorized as inheritance, convergence, differentiation, or extinction. These patterns are further interpreted with a Fish-Scale Multiscience mapping to clarify underlying theoretical and disciplinary lineages. Our results point to a two-stage trajectory: an early formation phase followed by a period of rapid expansion. Long-standing research lines persist in amine absorption, membrane separation, and metal–organic frameworks (MOFs), while direct air capture emerges later and becomes increasingly stable. Across the full period, five evolutionary mechanisms operate in parallel. We also find that techno-economic assessment, life-cycle and carbon accounting, and regulation–infrastructure coordination serve as key “weak-tie” bridges that connect otherwise separated subfields. Overall, the study reconstructs the core–periphery structure and maturity of CCT research and demonstrates that combining semantic topic modeling with theory-aware mapping complements strong-tie bibliometric approaches and offers a clearer, more transferable framework for understanding technology evolution. Full article
Show Figures

Figure 1

33 pages, 3341 KB  
Article
Language Change and Migration: /s/ Variation in Lima, Peru
by Carol A. Klee, Rocío Caravedo, Brandon M. A. Rogers, Aaron Rendahl, Lindsey Dietz and Kha T. Tran
Languages 2025, 10(12), 295; https://doi.org/10.3390/languages10120295 - 29 Nov 2025
Viewed by 1076
Abstract
In Peru, large-scale migration from the provinces to Lima in the second half of the twentieth century has created a context of intense language and dialect contact. This study examines /s/ variation among migrants from the Andean region, where Quechua, Aymara, and varieties [...] Read more.
In Peru, large-scale migration from the provinces to Lima in the second half of the twentieth century has created a context of intense language and dialect contact. This study examines /s/ variation among migrants from the Andean region, where Quechua, Aymara, and varieties of Andean Spanish—shaped through long-standing contact with these indigenous languages—are spoken. We analyze the speech of 59 participants representing “classic Limeños,” whose families have lived in Lima for several generations, and three generations of Andean migrants, using corpora collected in 1999–2002 and 2012–2013 to trace linguistic change in apparent time. Univariable analyses show significant generational differences: as distance from migration increases, aspiration becomes more frequent and elision declines, while [s] remains relatively stable after the first generation. Multivariable models incorporating migrant generation, family origin, neighborhood, education, and sex reveal that while a combined variable of migrant generation and family origin is significant, neighborhood, education, and sex are stronger predictors. Speakers from established neighborhoods, those with university education, and female speakers favor aspiration and [s], aligning with prestige norms. Mixed-effects logistic regression of linguistic variables confirms structured sociolinguistic change: the following segment is the strongest linguistic predictor, and there is a clear intergenerational shift from elision toward aspiration. However, constraint hierarchies—especially following segment and stress—remain stable, indicating change in rates rather than in linguistic conditioning. Full article
(This article belongs to the Special Issue Analyzing Language Change)
Show Figures

Figure 1

Back to TopTop