Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,174)

Search Parameters:
Keywords = carbon-thermal reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4150 KB  
Article
Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers
by Jinhong Zhang, Rong Li and Guihua Xu
Buildings 2026, 16(3), 492; https://doi.org/10.3390/buildings16030492 - 25 Jan 2026
Abstract
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. [...] Read more.
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. Secondly, its high hygroscopicity can lead to shrinkage cracking. In order to address the aforementioned issues, this study proposes a multi-scale modification strategy. The cementitious matrix was first strengthened using a binary blend of Fly Ash and Ground Granulated Blast Furnace Slag (GGBS), followed by the incorporation of a ternary admixture system containing Styrene-Acrylic Emulsion (SAE), a foaming agent (FA), and alkali-treated Straw Fibres (SF) to enhance workability and durability. The findings of this study demonstrate that a mineral admixture comprising 10% Fly Ash and 10% GGBS results in a substantial enhancement of matrix compactness, culminating in a 20% increase in compressive strength. An orthogonal test was conducted to identify the optimal formulation (D13), which was found to contain 4% SAE, 0.1% FA, and 5% SF. This formulation yielded a compressive strength of 35.2 MPa, a flexural strength of 7.5 MPa, and reduced water absorption to 8.0%. A comparative analysis was conducted between the mineral admixture mix ratio (Control group) and the Optimal mix ratio (Optimization group). The results of this analysis reveal that the Optimization group exhibited superior durability and thermal characteristics. Specifically, the water penetration depth of the optimized composite was successfully restricted to within 3.18 mm, while its thermal insulation performance demonstrated a significant enhancement of 12.3%. In the context of freeze–thaw cycles, the modified concrete demonstrated notable durability, exhibiting a 51.4% reduction in strength loss and a marginal 0.64% restriction in mass loss. SEM analysis revealed that the interaction between SAE and the FA resulted in the densification of the Interfacial Transition Zone (ITZ). In addition, the 3D network formed by SF redistributed internal stresses, thereby shifting the failure mode from brittle fracture to ductile deformation. The findings demonstrate that modifying VSLAC at both micro- and macro-levels can effectively balance structural integrity with thermal efficiency for sustainable construction applications. Full article
(This article belongs to the Special Issue Sustainable Approaches to Building Repair)
Show Figures

Figure 1

27 pages, 13307 KB  
Article
Synergistic Reinforcement and Multimodal Self-Sensing Properties of Hybrid Fiber-Reinforced Glass Sand ECC at Elevated Temperatures
by Lijun Ma, Meng Sun, Mingxuan Sun, Yunlong Zhang and Mo Liu
Polymers 2026, 18(3), 322; https://doi.org/10.3390/polym18030322 - 25 Jan 2026
Abstract
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a [...] Read more.
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a hybrid system of polypropylene fibers (PPFs) and carbon fibers (CFs). The evolution of mechanical properties and the multimodal self-sensing characteristics of the ECC were systematically investigated following thermal treatment from 20 °C to 800 °C. The results indicate that the hybrid system exhibits a significant synergistic effect: through PFFs’ pore-forming mechanism, internal vapor pressure is effectively released to mitigate spalling, while CFs provide residual strength compensation. Mechanically, the compressive strength increased by 51.32% (0.9% CF + 1.0% PPF) at 400 °C compared to ambient temperature, attributed to high-temperature-activated secondary hydration. Regarding self-sensing, the composite containing 1.1% CF and 1.5% PPF displayed superior thermosensitivity during heating (resistivity reduction of 49.1%), indicating potential for early fire warnings. Notably, pressure sensitivity was enhanced after high-temperature exposure, with the 0.7% CF + 0.5% PPF group achieving a Fractional Change in Resistivity of 31.1% at 600 °C. Conversely, flexural sensitivity presented a “thermally induced attenuation effect” primarily attributed to high-temperature-induced interfacial weakening. This study confirms that the “pore-formation” mechanism, combined with the reconstruction of the conductive network, governs the material’s macroscopic properties, providing a theoretical basis for green, intelligent, and fire-safe infrastructure. Full article
Show Figures

Figure 1

32 pages, 3155 KB  
Article
Experimentally Calibrated Thermal and Economic Optimization of Wall Insulation Systems for Residential Buildings in Cold Regions of Northwest China
by Xue Bai, Dawei Yang and Gehong Zhang
Buildings 2026, 16(3), 470; https://doi.org/10.3390/buildings16030470 - 23 Jan 2026
Viewed by 57
Abstract
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using [...] Read more.
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using Xi’an as a representative cold–dry continental climate. A guarded hot-box apparatus was employed to measure the steady-state thermal transmittance (U-value) of multilayer wall assemblies incorporating expanded polystyrene (EPS), extruded polystyrene (XPS), and rock wool at different insulation thicknesses. The measured U-values were integrated into a dynamic building energy simulation model (DeST-h), and the simulated energy demand was subsequently evaluated through life-cycle cost (LCC) analysis to identify cost-optimal insulation configurations. The results indicate a nonlinear reduction in heating energy demand with increasing insulation thickness, with diminishing marginal returns beyond approximately 50 mm. Among the investigated materials, XPS exhibits the most favorable thermal–economic performance. For the climatic and economic conditions of Xi’an, a 50 mm XPS insulation layer minimizes total life-cycle cost while reducing annual building energy consumption by approximately 23–24% compared with the uninsulated reference case. This experimentally calibrated framework provides practical and policy-relevant guidance for insulation design and retrofit strategies in cold and dry regions. Full article
(This article belongs to the Special Issue Advanced Characterization and Evaluation of Construction Materials)
Show Figures

Figure 1

22 pages, 4007 KB  
Article
Medium-Temperature Heat Pumps for Sustainable Urban Heating: Evidence from a District Network in Italy
by Mosè Rossi, Danilo Salvi and Gabriele Comodi
Energies 2026, 19(2), 560; https://doi.org/10.3390/en19020560 - 22 Jan 2026
Viewed by 33
Abstract
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 [...] Read more.
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 °C) can be effectively upgraded to supply temperatures of 65–75 °C, in line with 4th-generation district heating requirements. Specifically, 5256 h of MTHP operation within the DHN were analysed to validate the initial design assumptions, develop surrogate performance models, and assess the system’s techno-economic and environmental performance. The results indicate stable and reliable operation, with a weighted average Coefficient of Performance (COP) of 3.96 and a weighted average thermal output of 134.5 kW. From an economic perspective, the system achieves a payback period of approximately six years and a Levelised Cost of Heat (LCOH) of 0.0245 €/kWh. Environmentally, the MTHP enables CO2 emission reductions of about 120 t compared with conventional gas-fired boilers. Beyond its technical performance, the study highlights the strong replicability of MTHP solutions for small- and medium-scale DHNs across Europe. The proposed approach offers urban utilities a scalable and cost-competitive pathway towards low-carbon heat supply, directly supporting municipal climate strategies and aligning with key EU policy frameworks, including the European Green Deal, REPowerEU, and the “Fit-for-55” package. Full article
(This article belongs to the Special Issue Advances in Waste Heat Utilization Systems)
Show Figures

Figure 1

28 pages, 1402 KB  
Article
Solid-State Transformers in the Global Clean Energy Transition: Decarbonization Impact and Lifecycle Performance
by Nikolay Hinov
Energies 2026, 19(2), 558; https://doi.org/10.3390/en19020558 - 22 Jan 2026
Viewed by 50
Abstract
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, [...] Read more.
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, and advanced control capabilities that support renewable integration and electrified infrastructures. This paper presents a comparative life cycle assessment (LCA) of conventional transformers and SSTs across representative power-system applications, including residential and industrial distribution networks, electric vehicle fast-charging infrastructure, and transmission–distribution interface substations. The analysis follows a cradle-to-grave approach and is based on literature-derived LCA data, manufacturer specifications, and harmonized engineering assumptions applied consistently across all case studies. The results show that, under identical assumptions, SST-based solutions are associated with indicative lifecycle CO2 emission reductions of approximately 10–30% compared to conventional transformers, depending on power rating and operating profile (≈90–1000 t CO2 over 25 years across the four cases). These reductions are primarily driven by lower operational losses and reduced material intensity, while additional system-level benefits arise from enhanced controllability and compatibility with renewable-rich and hybrid AC/DC grids. The study also identifies key challenges that influence the sustainability performance of SSTs, including higher capital cost, thermal management requirements, and the long-term reliability of power-electronic components. Overall, the results indicate that SSTs represent a relevant enabling technology for future low-carbon power systems, while highlighting the importance of transparent assumptions and lifecycle-oriented evaluation when comparing emerging grid technologies. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

22 pages, 7799 KB  
Article
The Influence of Mechanochemical Activation on the Properties of a Double Complex Salt [Co(NH3)6][Fe(CN)6] and Its Thermolysis Products
by Alevtina Gosteva, Alexander M. Kalinkin, Vladimir Vinogradov, Diana Manukovskaya, Viktor Nikolaev, Vasilii Semushin and Maria Teplonogova
Thermo 2026, 6(1), 7; https://doi.org/10.3390/thermo6010007 - 19 Jan 2026
Viewed by 81
Abstract
Double complex salts (DCSs) of the composition [Co(NH3)6][Fe(CN)6] are a promising precursor for the preparation of catalysts for the hydrogenation of carbon oxides (CO and CO2) by Fischer–Tropsch synthesis. The specific surface area is an [...] Read more.
Double complex salts (DCSs) of the composition [Co(NH3)6][Fe(CN)6] are a promising precursor for the preparation of catalysts for the hydrogenation of carbon oxides (CO and CO2) by Fischer–Tropsch synthesis. The specific surface area is an important parameter for catalysts. Our article investigates the influence of mechanochemical activation (MCA) on this DCS in order to determine the conditions for obtaining the largest specific surface area of the intermetallic compound, a product of the DCS thermolysis. In this work, the effect of MCA on the physicochemical properties of the DCS [Co(NH3)6][Fe(CN)6] and the products of its thermal decomposition in an argon atmosphere were investigated. It was shown that MCA leads to partial reduction of Fe+3 to Fe+2, changes in the coordination of ammonia, amorphization of the structure and a decrease in the thermal stability of DCS. Thermolysis at 650 °C of samples subjected to MCA for 10 min results in the formation of nanocrystalline intermetallic compound Co0.5Fe0.5. The results demonstrate the potential of using MCA to control the properties of functional materials based on DCS. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

15 pages, 2366 KB  
Article
Preparation of Copper/Graphene and Graphitic Carbon Nitride Composites and Study of Their Electrocatalytic Activity in the Synthesis of Organic Compounds
by Nina M. Ivanova, Zainulla M. Muldakhmetov, Yakha A. Vissurkhanova, Yelena A. Soboleva, Leonid A. Zinovyev and Saule O. Kenzhetaeva
Catalysts 2026, 16(1), 99; https://doi.org/10.3390/catal16010099 - 18 Jan 2026
Viewed by 156
Abstract
In this study, copper–carbon material composites, Cu/CM (where CM is reduced graphene oxide (rGO), graphitic carbon nitride (g-C3N4), their mixture, and N-doped reduced graphene oxide (N-rGO)), were prepared using a simple method of chemical reduction of copper cations in [...] Read more.
In this study, copper–carbon material composites, Cu/CM (where CM is reduced graphene oxide (rGO), graphitic carbon nitride (g-C3N4), their mixture, and N-doped reduced graphene oxide (N-rGO)), were prepared using a simple method of chemical reduction of copper cations in the presence of CM related to molecular-level mixing methods. Additionally, copper cations from its oxides present in the composites were reduced in an electrochemical cell by depositing them on the surface of a horizontally positioned cathode. The structure and morphology of the Cu/CM composites were studied using electron microscopy and X-ray diffraction analysis. The thermal stability and elemental analysis were determined for the carbon materials. The resulting Cu/CM composites were used as electrocatalysts in the electrohydrogenation of the aromatic ketone, acetophenone. Cu/rGO and Cu/N-rGO composites with a 1:1 ratio exhibited catalytic activity in this process, increasing the rate of APh hydrogenation and its degree of conversion with the selective formation of a single product, methyl phenyl carbinol (or 1-phenylethanol), compared to the electrochemical reduction of APh on a cathode without a catalyst. The Cu/N-rGO composite demonstrated the highest electrocatalytic activity. Full article
Show Figures

Graphical abstract

24 pages, 4272 KB  
Article
Study on the Impact of Temperature and Humidity Variations in Climate Zones on the Life-Cycle Assessment of Wall Materials
by Xiling Zhou, Xinqi Wang, Linhui Wan, Yuyang Chen, Xiaohua Fu and Yi Wu
Buildings 2026, 16(2), 375; https://doi.org/10.3390/buildings16020375 - 16 Jan 2026
Viewed by 222
Abstract
Life-cycle assessment is crucial for evaluating materials’ environmental impact and guiding the development of low-carbon and sustainable buildings. However, conventional LCA methods often overlook critical impacts during the operation and maintenance stage. To address this gap, this study proposes an improved framework using [...] Read more.
Life-cycle assessment is crucial for evaluating materials’ environmental impact and guiding the development of low-carbon and sustainable buildings. However, conventional LCA methods often overlook critical impacts during the operation and maintenance stage. To address this gap, this study proposes an improved framework using four composite indicators to enable systematic evaluation of six wall materials across China’s five climate zones. Using a university teaching building in the Hot Summer and Cold Winter Zone as a case study, this study quantitatively analyzed the economic viability and carbon reduction potential of each material. Results indicate that lower thermal conductivity does not necessarily imply superior economic and carbon reduction performance. Factors including the material carbon emission factor, cost, and thermal properties, must be comprehensively considered. Buffering materials also exhibit climate dependency—WPM and BWPM (moisture-buffering plastering mortars) perform better in hot–humid zones than temperate zones. All five buffer materials reduce operational energy consumption; WPM and BWPM stand out with 15.7% and 16.7% life-cycle cost savings and 17.3% and 18.0% carbon emission reductions, respectively. This study addresses the limitations of traditional LCC/LCA and provides theoretical and practical support for scientific material selection and low-carbon building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 5111 KB  
Article
A Novel Parallel-Preheating Supercritical CO2 Brayton Cycle for Waste Heat Recovery from Offshore Gas Turbines: Energy, Exergy, and Economic Analysis Under Variable Loads
by Dianli Qu, Jia Yan, Xiang Xu and Zhan Liu
Entropy 2026, 28(1), 106; https://doi.org/10.3390/e28010106 - 16 Jan 2026
Viewed by 131
Abstract
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for [...] Read more.
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for waste heat recovery on offshore gas turbines. An integrated energy, exergy, and economic (3E) model was developed and showed good predictive accuracy (deviations < 3%). The comparative analysis indicates that the PBC significantly outperforms the simple recuperated Brayton cycle (SBC). Under 100% load conditions, the PBC achieves a net power output of 4.55 MW, while the SBC reaches 3.28 MW, representing a power output increase of approximately 27.9%. In terms of thermal efficiency, the PBC reaches 36.7%, compared to 21.5% for the SBC, marking an improvement of about 41.4%. Additionally, the electricity generation cost of the PBC is 0.391 CNY/kWh, whereas that of the SBC is 0.43 CNY/kWh, corresponding to a cost reduction of approximately 21.23%. Even at 30% gas turbine load, the PBC maintains high thermoelectric and exergy efficiencies of 30.54% and 35.43%, respectively, despite a 50.8% reduction in net power from full load. The results demonstrate that the integrated preheater effectively recovers residual flue gas heat, enhancing overall performance. To meet the spatial constraints of offshore platforms, we maintained a pinch-point temperature difference of approximately 20 K in both the preheater and heater by adjusting the flow split ratio. This approach ensures a compact system layout while balancing cycle thermal efficiency with economic viability. This study offers valuable insights into the PBC’s variable-load performance and provides theoretical guidance for its practical optimization in engineering applications. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

32 pages, 3235 KB  
Article
Towards Cleaner Diesel Engines: Performance and Emission Characteristics of Diesel–Ammonia–Methanol Fuel Blends
by Onur Kocatepe and Güven Gonca
Processes 2026, 14(2), 298; https://doi.org/10.3390/pr14020298 - 14 Jan 2026
Viewed by 186
Abstract
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 ° [...] Read more.
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 °C). Methanol provides improved reactivity and bound oxygen content that can enhance ignition characteristics. This computational study investigates diesel–ammonia–methanol ternary fuel blends using validated three-dimensional CFD simulations (ANSYS Forte 2023 R2; ANSYS, Inc., Canonsburg, PA, USA) with merged chemical kinetic mechanisms (247 species, 2431 reactions). The model was validated against experimental in-cylinder pressure data with deviations below 5% on a single-cylinder diesel engine (510 cm3, 17.5:1 compression ratio, 1500 rpm). Ammonia energy ratios were systematically varied (10–50%) with methanol substitution levels (0–90%). Fuel preheating at 530 K was employed for high-alcohol compositions exhibiting ignition failure at standard temperature. Results demonstrate that peak cylinder pressures of 130–145 bar are achievable at 10–30% ammonia with M30K–M60K configurations, comparable to baseline diesel (140 bar). Indicated thermal efficiency reaches 38–42% at 30% ammonia-representing 5–8 percentage point improvements over diesel baseline (31%)-but declines to 30–32% at 50% ammonia due to fundamental combustion limitations. CO2 reductions scale approximately linearly with ammonia content: 35–55% at 30% ammonia and 75–78% at 50% ammonia. NOX emissions demonstrate 30–60% reductions at efficiency-optimal configurations. Multi-objective optimization analysis identifies the A30M60K configuration (30% ammonia, 60% methanol, 530 K preheating) as optimal, achieving 42% thermal efficiency, 58% CO2 reduction, 51% NOX reduction, and 11% power enhancement versus diesel. This configuration occupies the Pareto frontier “knee point” with cross-scenario robustness. Full article
Show Figures

Figure 1

28 pages, 5718 KB  
Article
Differences in Geothermal Fluids in Sandstone and Carbonate Geothermal Reservoirs Based on Isotope Characteristics
by Hanxiong Zhang, Guiling Wang, Wei Zhang and Jiayi Zhao
Sustainability 2026, 18(2), 766; https://doi.org/10.3390/su18020766 - 12 Jan 2026
Viewed by 209
Abstract
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal [...] Read more.
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal resources. The North China Plain contains a typical carbonate thermal reservoir, and in this paper, the hydrochemical, isotopic, and redox characteristics of the geothermal fluids in sandstone and carbonate reservoirs are studied to obtain the differences in the geothermal fluids in the Rongcheng geothermal field in Xiong’an New Area. The results indicate that the geothermal fluids in the sandstone and carbonate reservoirs are mainly supplied by atmospheric rainfall, and the hydrochemical type is mainly Cl-Na type. By comparing and analyzing the stable isotope (O, H, C, S, and Sr) characteristics of the two types of geothermal fluids, it is found that the variation range of δ13C values for two types of sandstone thermal storage geothermal fluids was found to be −10.6‰~−12.8‰, while the variation range of δ13C values for carbonate thermal storage geothermal fluids was −3.3‰~−7.5‰. The 87Sr/86Sr ratio of sandstone thermal storage geothermal fluids was distributed between 0.708–0.718, and the 87Sr/86Sr ratio of carbonate thermal storage geothermal fluids was distributed between 0.708–0.713. The range of δ34S values for sandstone thermal storage geothermal fluids was +9.46‰~+10.5‰, and the range of δ34S values for carbonate thermal storage geothermal fluids was +24.84‰~+34.49‰. The two types of geothermal fluids have been subjected to varying degrees of oxidation-reduction, and their cycling and mixing characteristics are different. This has resulted in the formation of relatively oxidized geothermal fluids in the sandstone geothermal reservoir and relatively reduced geothermal fluids in the carbonate geothermal reservoir. In future development and utilization of geothermal resources, paying attention to the basic characteristics of the geothermal fluids in different reservoirs and identifying the differences in different geothermal fluids can further improve the efficiency of geothermal resource development and utilization. Full article
Show Figures

Figure 1

36 pages, 4040 KB  
Review
Advances in 3D-Printed Microreactors for Biodiesel Production: Performance Evaluation, Challenges, and Sustainable Design Perspectives
by Oyetola Ogunkunle, Michael Olusoji Olusanya, Paul O. Fadojutimi and Reinout Meijboom
Processes 2026, 14(2), 266; https://doi.org/10.3390/pr14020266 - 12 Jan 2026
Viewed by 392
Abstract
The growing demand for renewable fuels has renewed interest in biodiesel production, prompting exploration beyond conventional reactors. This review assesses three-dimensional (3D) printed microreactors for biodiesel synthesis via transesterification, with a focus on their potential for enhanced process efficiency, sustainability, and modular deployment. [...] Read more.
The growing demand for renewable fuels has renewed interest in biodiesel production, prompting exploration beyond conventional reactors. This review assesses three-dimensional (3D) printed microreactors for biodiesel synthesis via transesterification, with a focus on their potential for enhanced process efficiency, sustainability, and modular deployment. Compared with conventional batch and stirred-tank reactors, 3D-printed microstructured systems often offer superior mass and heat transfer, enabling biodiesel yields up to ~99% in some studies, with critically short residence times (e.g., as low as ~5 s) and reported energy reductions of 60% to 90% under optimal conditions. Optimized configurations in recent work achieved energy requirements as low as ~0.05 to 0.12 kWh L−1, substantially lower than the typical 0.25 to 0.60 kWh L−1 for conventional setups. However, existing studies remain limited in number and scope: issues such as catalyst leaching, chemical and thermal stability of printing materials, dimensional inaccuracies, and scalability of microreactor networks remain under-investigated. Long-term durability, real-world feedstock variation (e.g., high-FFA waste oils), and comprehensive lifecycle assessments are often lacking, limiting confident extrapolation to industrial scale. Despite these challenges, the emerging evidence suggests significant promise for 3D-printed microreactors as a pathway toward modular, energy-efficient, and potentially low-carbon biodiesel production, provided that future work addresses their practical limitations and validates performance under industrially realistic conditions. Full article
(This article belongs to the Special Issue Advanced Catalytic Approaches for Sustainable Biofuel Production)
Show Figures

Figure 1

24 pages, 4689 KB  
Article
Intelligent Detection and Energy-Driven Repair of Building Envelope Defects for Improved Thermal and Energy Performance
by Daiwei Luo, Tianchen Zhang, Wuxing Zheng and Qian Nie
Energies 2026, 19(2), 351; https://doi.org/10.3390/en19020351 - 11 Jan 2026
Viewed by 155
Abstract
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient [...] Read more.
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient detection methodology tailored to small-scale maintenance scenarios is proposed, leveraging the YOLOv11 object detection architecture to develop an intelligent system capable of recognizing common envelope defects in contemporary residential buildings, including cracks, spalling, and sealant failure. The system prioritizes the detection of anomalies that may induce thermal bridging, reduced airtightness, or insulation degradation. Defects are classified according to severity and their potential impact on thermal behavior, enabling a graded, integrated repair strategy that holistically balances structural safety, thermal restoration, and façade aesthetics. By explicitly incorporating energy performance recovery as a core objective, the proposed approach not only enhances the automation of spatial data processing but also actively supports the green operation and low-carbon retrofitting of existing urban building stock. Characterized by low cost, high efficiency, and ease of deployment, this method offers a practical and scalable technical pathway for the intelligent diagnosis of thermal anomalies and the enhancement of building energy performance. It aligns with the principles of high-quality architectural development and sustainable building governance, while concretely advancing operational energy reduction in the built environment and contributing meaningfully to energy conservation goals. Full article
Show Figures

Figure 1

46 pages, 6520 KB  
Review
A Comprehensive Review on Dual-Pathway Utilization of Coal Gangue Concrete: Aggregate Substitution, Cementitious Activity Activation, and Performance Optimization
by Yuqi Wang, Lin Zhu and Yi Xue
Buildings 2026, 16(2), 302; https://doi.org/10.3390/buildings16020302 - 11 Jan 2026
Viewed by 181
Abstract
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue [...] Read more.
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue in concrete, including Pathway 1 (aggregate substitution) and Pathway 2 (cementitious activity activation). While the application of coal gangue aggregates is traditionally limited by their inherent high porosity and lower mechanical strength than those of natural aggregates, this review demonstrates that performance barriers can be effectively overcome. Through multiscale modification strategies—including surface densification, biological mineralization (MICP), and matrix synergy—the interfacial defects are significantly mitigated, allowing for feasible substitution in structural concrete. Conversely, for the mineral admixture pathway, controlled thermal activation is identified as a key process to optimize the phase transformation of kaolinite, thereby significantly enhancing pozzolanic reactivity and long-term durability. According to reported studies, the partial replacement of natural aggregates or cement with coal gangue can reduce CO2 emissions by approximately tens to several hundreds of kilograms per ton of coal gangue utilized, depending on the substitution level and activation strategy, highlighting its considerable potential for carbon reduction in the construction sector. Nevertheless, challenges related to energy-intensive activation processes and variability in raw gangue composition remain. These limitations indicate the need for future research focusing on low-carbon activation technologies, standardized classification of coal gangue resources, and long-term performance validation under realistic service environments. Based on the synthesized literature, this review discusses hierarchical utilization concepts and low-carbon activation approaches as promising directions for promoting the sustainable transformation of coal gangue from an environmental liability into a carbon-reduction asset in the construction industry. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 4088 KB  
Article
Implementing Overfire Air Technology in Coal-Fired Power Plants to Promote Environmentally Friendly Energy Generation
by Saltanat Bolegenova, Aliya Askarova, Aizhan Nugymanova, Valeriy Maximov, Symbat Bolegenova, Nariman Askarov, Shynar Ospanova and Zhanar Shortanbayeva
Energies 2026, 19(2), 347; https://doi.org/10.3390/en19020347 - 10 Jan 2026
Viewed by 148
Abstract
This paper presents a numerical study on the deployment of Overfire Air (OFA) technology in coal-fired thermal power plants in Kazakhstan to reduce harmful emissions. The simulation utilized a digital model of the combustion chamber of the BKZ-75 boiler at Shakhtinsk thermal power [...] Read more.
This paper presents a numerical study on the deployment of Overfire Air (OFA) technology in coal-fired thermal power plants in Kazakhstan to reduce harmful emissions. The simulation utilized a digital model of the combustion chamber of the BKZ-75 boiler at Shakhtinsk thermal power plant, which utilizes high-ash Karaganda coal containing 35.10% ash. During the development of two-stage combustion technology, different methods of supplying extra air via OFA injectors were examined. Various positions within the combustion chamber were evaluated for their placement: at heights of h = 0.165 m; 0.75 m; 1.375 m; 2.25 m; 2.5 m; 8 m; 9.4 m; 10 m; 11 m; and 12 m. The baseline combustion mode (OFA = 0%) and several additional air injector settings were analyzed, including OFA levels of 5%, 10%, 15%, 18%, 20%, 25%, and 30% of the total air volume. Numerical simulations generated temperature distributions along with carbon monoxide (CO) and nitrogen (NO) concentration fields, both inside and outside the combustion chamber outlet. Research indicates that the most effective reduction in pollutant emissions happens when OFA injectors are positioned at 9.4 m and supply supplementary air at an OFA rate of 18%. Under these settings, the carbon monoxide concentration at the combustion chamber outlet decreases by approximately 36%, while nitrogen oxide levels drop by 25%, compared to the baseline condition (OFA = 0%). These insights can be utilized to upgrade boiler units, promoting cleaner fuel combustion in coal-fired thermal power plants. Full article
Show Figures

Figure 1

Back to TopTop