Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Mineral Admixture Proportions
2.2.2. Experimental Program
2.2.3. Preparation Method
3. Results and Analysis
3.1. Influence of Mineral Admixtures on VSLAC Performance
3.2. Influence of Individual Admixtures on Performance
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.2.3. Water Absorption Rate
3.2.4. Thermal Conductivity and Frost Resistance
3.3. Microstructural Analysis
3.4. Results of Multi-Admixture Incorporation
3.4.1. Orthogonal Experimental Analysis
3.4.2. Comparative Experimental Analysis
3.5. Fabrication Morphology and Failure Modes
4. Conclusions
- Synergistic Efficacy of Binary SCMs: The binary incorporation of 10% fly ash and 10% GGBS resulted in a potent synergy between pozzolanic reaction kinetics and physical packing mechanisms. This combination effectively densified the cementitious matrix while reducing inter-particle friction, thereby optimising the rheological behaviour of the fresh paste. Consequently, the modified binder system yielded a 28-day compressive strength of 28.8 MPa, representing a 20% enhancement relative to the control cohort.
- The Mechanistic Influence of Discrete Admixtures: The present study has demonstrated that individual admixture analysis can reveal substantial improvements in interfacial adhesion, as evidenced by a 4% SAE, which has been shown to yield a 40% gain in flexural capacity. The FA at a 0.1% threshold has been demonstrated to refine pore topology and rheology; however, supra-optimal concentrations have been shown to trigger detrimental macropore coalescence and subsequent mechanical deterioration. Furthermore, the 5% alkali-treated SF establishes a robust 3D bridging scaffold, successfully transitioning the failure mechanism from a brittle fracture regime to a quasi-ductile response.
- Ternary Synergistic Optimization: The orthogonal experimental design identifies the D13 configuration (4% SAE, 0.1‰ FA, and 5% SF) as the optimal formulation. The ternary system is found to yield superior mechanical and physical properties, including a compressive strength of 35.2 MPa, a flexural strength of 7.5 MPa, and a minimised water absorption of 8.0%. In comparison with the baseline, the optimised VSLAC exhibited a 51.4% reduction in strength degradation following freeze–thaw cycles and a 12.3% decrease in thermal conductivity, demonstrating exceptional environmental resilience.
- Micro-evolution and structural stability: The micro-analytical validation process, encompassing both SEM and Abaqus, has been undertaken to ascertain the efficacy of the synergistic interaction among admixtures. The findings of this process have been corroborated and substantiated, thus confirming that the aforementioned admixtures indeed promote ITZ densification and pore architecture refinement. The sealing effect of SAE and FA on the vesicular scoria surface, coupled with the crack-arresting action of SF, effectively suppresses aggregate flotation and phase stratification. The process ensures macro-homogeneity and structural integrity of the VSLAC composite.
- Prospective Outlook: Whilst the present study has demonstrated an enhancement in the immediate performance of the enhanced VSLAC, subsequent research should focus on aspects such as artificial intelligence (AI), automated long-term carbonation kinetics, creep behaviour, and the stability of alkali-aggregate reactions. Furthermore, a full life cycle assessment and technical economic analysis should be conducted to verify the environmental benefits and commercial feasibility of this material for large-scale application in sustainable ultra-low energy buildings [56,57,58].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| VS | Volcanic Scoria |
| VSLAC | Volcanic Scoria Lightweight Aggregate Concrete |
| OPC | Ordinary Portland Cement |
| GGBS | Ground Granulated Blast Furnace Slag |
| SAE | Styrene-acrylic Emulsion |
| FA | Foaming Agent |
| SF | Straw Fibre |
| ITZ | Interfacial Transition Zone |
| SEM | Scanning Electron Microscopy |
| SCMs | Supplementary Cementitious Materials |
| LWAC | Lightweight Aggregate Concrete |
| PCE | Polycarboxylate-based |
References
- Onoue, K.; Tamai, H.; Suseno, H. Shock-Absorbing Capability of Lightweight Concrete Utilizing Volcanic Pumice Aggregate. Constr. Build. Mater. 2015, 83, 261–274. [Google Scholar] [CrossRef]
- Sahoo, C.; Sahoo, S.K.; Das, M.; Mishra, S.P. Lightweight Aggregate Concrete: Strength Analysis. Curr. J. Appl. Sci. Technol. 2022, 41, 32–41. [Google Scholar] [CrossRef]
- Mo, K.H.; Ling, T.-C.; Alengaram, U.J.; Yap, S.P.; Yuen, C.W. Overview of Supplementary Cementitious Materials Usage in Lightweight Aggregate Concrete. Constr. Build. Mater. 2017, 139, 403–418. [Google Scholar] [CrossRef]
- Cavalline, T.L.; Gallegos, J.; Castrodale, R.W.; Freeman, C.; Liner, J.; Wall, J. Influence of Lightweight Aggregate Concrete Materials on Building Energy Performance. Buildings 2021, 11, 94. [Google Scholar] [CrossRef]
- Abed, M.A.; Anagreh, A.; Tošić, N.; Alkhabbaz, O.; Alshwaiki, M.E.; Černý, R. Structural Performance of Lightweight Aggregate Concrete Reinforced by Glass or Basalt Fiber Reinforced Polymer Bars. Polymers 2022, 14, 2142. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yang, X.; Miao, Y.; Chen, T.; Yao, Z. A Study of Energy Dissipation of Polypropylene Fiber Reinforced Recycled Concrete Under Uniaxial Compression. Mech. Compos. Mater. 2024, 60, 717–728. [Google Scholar] [CrossRef]
- Rathika, M.; Ravichandran, P.T.; Ramasubramani, R. Experimental Investigation on the Mechanical Properties and Microstructure Behaviour of Concrete Using Lightweight Expanded Clay Aggregate (LECA) with Admixture. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; Volume 3187, p. 030004. [Google Scholar]
- Agrawal, Y.; Gupta, T.; Sharma, R.; Panwar, N.L.; Siddique, S. A Comprehensive Review on the Performance of Structural Lightweight Aggregate Concrete for Sustainable Construction. Constr. Mater. 2021, 1, 39–62. [Google Scholar] [CrossRef]
- Hong, W.; Shen, C.; Zhu, X. Assessing the Potential of Recycled Fine Aggregate from Freeze-Thawed Parent Concrete for Structural Concrete. Mater. Res. Express 2023, 10, 125504. [Google Scholar] [CrossRef]
- Sua-iam, G.; Makul, N. Recycling Prestressed Concrete Pile Waste to Produce Green Self-Compacting Concrete. J. Mater. Res. Technol. 2023, 24, 4587–4600. [Google Scholar] [CrossRef]
- Alyaseen, A.; Poddar, A.; Kumar, N.; Sihag, P.; Lee, D.; Kumar, R.; Singh, T. Assessing the Compressive and Splitting Tensile Strength of Self-Compacting Recycled Coarse Aggregate Concrete Using Machine Learning and Statistical Techniques. Mater. Today Commun. 2024, 38, 107970. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Miao, W.; Su, Y.; He, X.; Strnadel, B. Preparation and Characterizations of Hydroxyapatite Microcapsule Phase Change Materials for Potential Building Materials. Constr. Build. Mater. 2021, 297, 123576. [Google Scholar] [CrossRef]
- Shah, S.J.; Naeem, A.; Hejazi, F.; Mahar, W.A.; Haseeb, A. Experimental Investigation of Mechanical Properties of Concrete Mix with Lightweight Expanded Polystyrene and Steel Fibers. CivilEng 2024, 5, 209–223. [Google Scholar] [CrossRef]
- Alharthai, M.; Ali, T.; Qureshi, M.Z.; Ahmed, H. The Enhancement of Engineering Characteristics in Recycled Aggregates Concrete Combined Effect of Fly Ash, Silica Fume and PP Fiber. Alex. Eng. J. 2024, 95, 363–375. [Google Scholar] [CrossRef]
- Geetha, S.; Sree Varrun, D.; Sathya Sudhan, S.; Muthuraja, V. Studies on Properties of Polymer Modified Aerated Concrete. Mater. Today Proc. 2023, 80, 870–876. [Google Scholar] [CrossRef]
- He, Q. A Unified Metric Architecture for AI Infrastructure: A Cross-Layer Taxonomy Integrating Performance, Efficiency, and Cost. arXiv 2025, arXiv:2511.21772. [Google Scholar]
- Shi, C.; Li, M.; Ma, C.; He, T. Interfacial Bonding Properties of Styrene-Butadiene Rubber and Ethylene Vinyl Acetate Emulsion-Modified OPC–CAC–G Repair Mortar. Constr. Build. Mater. 2023, 370, 130747. [Google Scholar] [CrossRef]
- He, Q.; Qu, C. Waste-to-Energy-Coupled AI Data Centers: Cooling Efficiency and Grid Resilience. arXiv 2025, arXiv:2512.24683. [Google Scholar]
- Sun, D.; Fan, X.; Zhang, B.; Ding, F.; Wu, R.; Zhang, Z. Early-Age Autogenous Shrinkage Control in Nano-CaCO3 Modified Concrete Using Superabsorbent Polymer Internal Curing. J. Build. Eng. 2025, 116, 114731. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Rong, H.; Ma, G. Research on the Foaming Mechanism of Microbial Foaming Agent and Its Application in Foam Concrete. Constr. Build. Mater. 2023, 379, 131041. [Google Scholar] [CrossRef]
- Bian, P.; Zhang, M.; Yu, Q.; Zhan, B.; Gao, P.; Guo, B.; Chen, Y. Prediction Model of Compressive Strength of Foamed Concrete Considering Pore Size Distribution. Constr. Build. Mater. 2023, 409, 133705. [Google Scholar] [CrossRef]
- Gołaszewska, M.; Gołaszewski, J.; Klemczak, B.; Koenders, E.A.B. Effect of Foaming Agent and Admixtures on Hydration in Ultralight Foam Concrete with Cement-Metakaolin Binders. J. Build. Eng. 2025, 104, 112365. [Google Scholar] [CrossRef]
- Deshpande, A.A.; Kumar, D.; Ranade, R. Temperature Effects on the Bond Behavior between Deformed Steel Reinforcing Bars and Hybrid Fiber-Reinforced Strain-Hardening Cementitious Composite. Constr. Build. Mater. 2020, 233, 117337. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Chen, W. Experimental Study on the Impact Resistance of Steel Fiber Reinforced All-Lightweight Concrete Beams under Single and Hybrid Mixing Conditions. Buildings 2023, 13, 1251. [Google Scholar] [CrossRef]
- Yan, Y.; Xing, Z.; Chen, X.; Xie, Z.; Zhang, J.; Chen, Y. Axial Compression Performance of CFST Columns Reinforced by Ultra-High-Performance Nano-Concrete under Long-Term Loading. Nanotechnol. Rev. 2023, 12, 20220537. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Abu Arab, A.M.; Farooq, F.; Eldin, S.M.; Javed, M.F. Prediction of Sustainable Concrete Utilizing Rice Husk Ash (RHA) as Supplementary Cementitious Material (SCM): Optimization and Hyper-Tuning. J. Mater. Res. Technol. 2023, 25, 1495–1536. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Chen, Z. Experimental Study on Preparation and Performance of the Corn Straw Fiber (CSF) Reinforced EPS Concrete. J. Build. Eng. 2024, 89, 109378. [Google Scholar] [CrossRef]
- Fan, D.; Zhu, X.; Xiang, Z.; Lu, Y.; Quan, L. Dimension-Reduction Many-Objective Optimization Design of Multimode Double-Stator Permanent Magnet Motor. IEEE Trans. Transp. Electrific. 2025, 11, 1984–1994. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Li, L. Effects of Nano-SiO2 Grafting on Improving the Interfacial and Mechanical Properties of Concrete with Rice Straw Fibers. Constr. Build. Mater. 2023, 398, 132516. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Zhang, Y.; Zou, B.; Hong, H. A Tutorial-Generating Method for Autonomous Online Learning. IEEE Trans. Learn. Technol. 2024, 17, 1532–1541. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; Martínez-García, R.; de Prado-Gil, J.; Ahmed, M.; Yosri, A.M. Ultra-High-Performance Fiber-Reinforced Sustainable Concrete Modified with Silica Fume and Wheat Straw Ash. J. Mater. Res. Technol. 2023, 24, 6118–6139. [Google Scholar] [CrossRef]
- Hong, S.-H.; Choi, J.-S.; Lee, J.; Yoon, Y.-S. Optimal Mix Design and Quality Properties of 50 MPa Self-Consolidating Lightweight Concrete. J. Korean Soc. Hazard Mitig. 2020, 20, 135–142. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Li, M.; Chen, H.; Cao, H.; Jing, C. Continuum Percolation of the Realistic Nonuniform ITZs in 3D Polyphase Concrete Systems Involving the Aggregate Shape and Size Differentiation. Sci. Eng. Compos. Mater. 2024, 31, 20220237. [Google Scholar] [CrossRef]
- Ahmed, A.R.; Yamany, M.E.; Kholy, A.E. High Strength Lightweight Concrete, Using Scoria and Mineral Admixture. Int. J. Membr. Sci. Technol. 2023, 10, 3463–3471. [Google Scholar] [CrossRef]
- Liu, J.; Xie, X.; Li, L. Experimental Study on Mechanical Properties and Durability of Grafted Nano-SiO2 Modified Rice Straw Fiber Reinforced Concrete. Constr. Build. Mater. 2022, 347, 128575. [Google Scholar] [CrossRef]
- Wang, T.; Gao, X.; Li, Y.; Liu, Y. An Orthogonal Experimental Study on the Influence of Steam-Curing on Mechanical Properties of Foam Concrete with Fly Ash. Case Stud. Constr. Mater. 2024, 20, e02665. [Google Scholar] [CrossRef]
- Abbas, S.N.; Qureshi, M.I. An Investigation of Mechanical Properties of Self Compacting Concrete (SCC) after Addition of Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash (FA). Mater. Chem. Phys. Sustain. Energy 2025, 2, 100008. [Google Scholar] [CrossRef]
- Yan, G.; Hu, J.; Chen, M.; Ma, Y.; Huang, H.; Zhang, Z.; Wei, J.; Shi, C.; Yu, Q. Performance Evaluation of Reinforced Slag-Fly Ash-Ceramic Waste Powders Ternary Geopolymer Concrete under Chloride Ingress Environment. Constr. Build. Mater. 2025, 478, 141447. [Google Scholar] [CrossRef]
- Araújo, L.B.R.; de Souza, M.L.; Melo, A.R.S.; Costa, H.N.; Babadopulos, L.F.A.L.; Cabral, A.E.B.; Pileggi, R.G. High-Strength Self-Compacting Alkali-Activated Concrete Produced with Fly Ash and Steel Slag: Rheological Behavior and Mixing Rheology Comparisons with a Portland Cement Concrete. CEMENT 2025, 22, 100156. [Google Scholar] [CrossRef]
- Tay, C.H.; Mazlan, N.; Wayayok, A.; Basri, M.S.; Albakri Abdullah, M.M. Zeolite Based Foamed Geopolymer Concrete Reinforced with Cellulose Nanofibril Prepared in Low Concentration Alkaline Solution: Porosity, Compressive Strength, and Water Permeability. J. Clean. Prod. 2025, 489, 144609. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, W. Sponge Effect of Aerated Concrete on Phosphorus Adsorption-Desorption from Agricultural Drainage Water in Rainfall. Soil Water Res. 2020, 15, 220–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, K.; Liu, J.; Zheng, X.; Qiu, W.; Wang, Y.; Tan, H. Effect of C-S-H/PCE on Compressive Strength and Carbonation Resistance of Foamed Concrete. Constr. Build. Mater. 2025, 495, 143548. [Google Scholar] [CrossRef]
- Falliano, D.; Parmigiani, S.; Suarez-Riera, D.; Ferro, G.A.; Restuccia, L. Stability, Flexural Behavior and Compressive Strength of Ultra-Lightweight Fiber-Reinforced Foamed Concrete with Dry Density Lower than 100 Kg/M3. J. Build. Eng. 2022, 51, 104329. [Google Scholar] [CrossRef]
- Vinod, B.R.; Surendra, H.J.; Shobha, R. Lightweight Concrete Blocks Produced Using Expanded Polystyrene and Foaming Agent. Mater. Today Proc. 2022, 52, 1666–1670. [Google Scholar] [CrossRef]
- Majeed, S.S.; Othuman Mydin, M.A.; Bahrami, A.; Dulaimi, A.; Özkılıç, Y.O.; Omar, R.; Jagadesh, P. Development of Ultra-Lightweight Foamed Concrete Modified with Silicon Dioxide (SiO2) Nanoparticles: Appraisal of Transport, Mechanical, Thermal, and Microstructural Properties. J. Mater. Res. Technol. 2024, 30, 3308–3327. [Google Scholar] [CrossRef]
- Mostafa, S.A.; Agwa, I.S.; Elboshy, B.; Zeyad, A.M.; Seddik Hassan, A.M. The Effect of Lightweight Geopolymer Concrete Containing Air Agent on Building Envelope Performance and Internal Thermal Comfort. Case Stud. Constr. Mater. 2024, 20, e03365. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, X.; Liu, X.; Tian, C.; Liu, L.; Chen, Z.; Tan, H.; Yang, H. Effects of Styrene-Acrylic Emulsion on Toughness, Volume Stability and Fiber Dispersion of Hybrid Fibers Reinforced Ultra-High Performance Geopolymer Concrete. Constr. Build. Mater. 2025, 473, 140930. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, X.; Yang, Y.; Chen, X.; Yang, L.; Yang, T. Mechanical Properties and Meso-Structure of Concrete under the Interaction between Basalt Fiber and Polymer. Constr. Build. Mater. 2023, 404, 133223. [Google Scholar] [CrossRef]
- Moelich, G.M.; Kruger, P.J.; Combrinck, R. Mitigating Early Age Cracking in 3D Printed Concrete Using Fibres, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures. Cem. Concr. Res. 2022, 159, 106862. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, H.; Liu, G.; Wang, X.; Cui, W. Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets. J. Renew. Mater. 2023, 11, 1763–1791. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, X.; Guo, S.; Zhang, L.; Ren, J. A Systematic Research on Foamed Concrete: The Effects of Foam Content, Fly Ash, Slag, Silica Fume and Water-to-Binder Ratio. Constr. Build. Mater. 2022, 339, 127683. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, S.; Rodrigue, D. Parameters Estimation and Fatigue Life Prediction of Sisal Fibre Reinforced Foam Concrete. J. Mater. Res. Technol. 2022, 20, 381–396. [Google Scholar] [CrossRef]
- Lura, P.; Toropovs, N.; Justs, J.; Shakoorioskooie, M.; Münch, B.; Griffa, M. Mitigation of Plastic Shrinkage Cracking with Natural Fibers—Kenaf, Abaca, Coir, Jute and Sisal. Cem. Concr. Compos. 2024, 155, 105827. [Google Scholar] [CrossRef]
- Hasan, N.S.; Shaurdho, N.M.N.; Basit, A.; Paul, S.C.; Sobuz, H.R.; Miah, M.J. Assessment of the Rheological and Mechanical Properties of Palmyra Fruit Mesocarp Fibre Reinforced Eco-Friendly Concrete. Constr. Build. Mater. 2023, 407, 133530. [Google Scholar] [CrossRef]
- Yang, W.; Huang, Y.; Li, C.; Tang, Z.; Quan, W.; Xiong, X.; He, J.; Wu, W. Damage Prediction and Long-Term Cost Performance Analysis of Glass Fiber Recycled Concrete under Freeze-Thaw Cycles. Case Stud. Constr. Mater. 2024, 21, e03795. [Google Scholar] [CrossRef]
- He, Q.; Qu, C. Modular Landfill Remediation for AI Grid Resilience. arXiv 2025, arXiv:2512.19202. [Google Scholar] [CrossRef]
- Liang, N.; Hu, X.; Zhang, X.; Li, W.; Guo, Z.; Huang, X.; Li, Z.; Zhang, R.; Shen, T.; Zou, X.; et al. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal–Organic Frameworks as Response Signals. J. Agric. Food Chem. 2023, 71, 7584–7592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.T.; Duan, Y.J.; Wang, Y.J.; Pineda, E.; Yang, Y.; Pelletier, J.M.; Kato, H.; Crespo, D.; Qiao, J.C. Creep and recovery behavior of metallic glasses in a global strain approach within transition state theory. Acta Mech. Sin. 2026, 42, 425311. [Google Scholar]















| Material | Key Specifications/Properties | Source/Manufacturer |
|---|---|---|
| Volcanic Scoria (VS) | Fine: 0.15–4.75 mm; Coarse: 5–12 mm | Huinan, Jilin, China |
| OPC | Grade P·O 42.5; 28-day strength: 45.5 MPa | Changchun Yatai Cement Plant, ChangChun, Jilin, China |
| Fly Ash | Class II SCM | Compliant with national standards ChangChun, Jilin, China |
| GGBS | Ball-milled for 30 min | Compliant with national standards ChangChun, Jilin, China |
| SAE | Styrene-Acrylic Emulsion; 48.2% solid content | Guangzhou Suixin Chemical Co., Ltd. Guangzhou, Guangdong, China |
| FA | SDS (C12H25OSO3Na); Krafft point of 8 °C | White powder form, ChangChun, Jilin, China |
| SF | Na2SiO3 treated [35]; Width: 0.5–2 mm; Length: 15–25 mm | Corn straw, ChangChun, Jilin, China |
| Superplasticizer | Polycarboxylate-based(PCE); 25% water reduction | Rheological regulator, ChangChun, Jilin, China |
| Group | VS | OPC | Fly Ash or GGBS | Water | PCE |
|---|---|---|---|---|---|
| a | 800 | 450 | 50 | 275 | 2 |
| b | 800 | 400 | 100 | 275 | 2 |
| c | 800 | 350 | 150 | 275 | 2 |
| Group | VS | OPC | Fly Ash | GGBS | Water | PCE |
|---|---|---|---|---|---|---|
| 1 | 800 | 400 | 50 | 50 | 275 | 2 |
| 2 | 800 | 350 | 50 | 100 | 275 | 2 |
| 3 | 800 | 300 | 50 | 150 | 275 | 2 |
| 4 | 800 | 350 | 100 | 50 | 275 | 2 |
| 5 | 800 | 300 | 100 | 100 | 275 | 2 |
| 6 | 800 | 250 | 100 | 150 | 275 | 2 |
| 7 | 800 | 300 | 150 | 50 | 275 | 2 |
| 8 | 800 | 250 | 150 | 100 | 275 | 2 |
| 9 | 800 | 200 | 150 | 150 | 275 | 2 |
| SMs (%) Group | A | B | C | D | E |
|---|---|---|---|---|---|
| SAE | 1 | 2 | 4 | 8 | 16 |
| FA | 0.1 | 0.5 | 1 | 2 | 3 |
| SF | 1 | 3 | 5 | 7 | 9 |
| Na2SiO3 treated SF | 1 | 3 | 5 | 7 | 9 |
| Experimental Group | Influencing Factors | ||
|---|---|---|---|
| SAE | FA | SF | |
| D1 | A1 | B1 | C1 |
| D2 | A1 | B2 | C2 |
| D3 | A1 | B3 | C3 |
| D4 | A1 | B4 | C4 |
| D5 | A1 | B5 | C5 |
| D6 | A2 | B1 | C5 |
| D7 | A2 | B2 | C1 |
| D8 | A2 | B3 | C2 |
| D9 | A2 | B4 | C3 |
| D10 | A2 | B5 | C4 |
| D11 | A3 | B1 | C4 |
| D12 | A3 | B2 | C5 |
| D13 | A3 | B3 | C1 |
| D14 | A3 | B4 | C2 |
| D15 | A3 | B5 | C3 |
| D16 | A4 | B1 | C3 |
| D17 | A4 | B2 | C4 |
| D18 | A4 | B3 | C5 |
| D19 | A4 | B4 | C1 |
| D20 | A4 | B5 | C2 |
| D21 | A5 | B1 | C2 |
| D22 | A5 | B2 | C3 |
| D23 | A5 | B3 | C4 |
| D24 | A5 | B4 | C5 |
| D25 | A5 | B5 | C1 |
| Experimental Group | Compressive Strength (MPa) | Flexural Strength (MPa) | Water Absorption Rate (%) |
|---|---|---|---|
| D1 | 30.1 | 7.2 | 8.9 |
| D2 | 28.8 | 7.3 | 9.2 |
| D3 | 26.8 | 7.0 | 9.5 |
| D4 | 24.4 | 7.0 | 9.6 |
| D5 | 22.4 | 6.5 | 10.1 |
| D6 | 23.3 | 6.8 | 9.0 |
| D7 | 32.2 | 7.4 | 8.7 |
| D8 | 30.1 | 7.3 | 9.5 |
| D9 | 29.8 | 6.9 | 9.2 |
| D10 | 27.6 | 6.7 | 10.1 |
| D11 | 26.2 | 7.1 | 12.1 |
| D12 | 25.3 | 6.9 | 13.4 |
| D13 | 35.2 | 7.5 | 8.0 |
| D14 | 30.3 | 6.8 | 8.9 |
| D15 | 30.4 | 7.2 | 9.9 |
| D16 | 28.8 | 7.1 | 11.8 |
| D17 | 27.9 | 6.9 | 12.3 |
| D18 | 25.5 | 6.5 | 14.1 |
| D19 | 28.8 | 6.7 | 9.3 |
| D20 | 28.9 | 6.8 | 9.5 |
| D21 | 30.2 | 7.2 | 9.3 |
| D22 | 29.9 | 7.0 | 9.3 |
| D23 | 27.8 | 6.6 | 10.4 |
| D24 | 23.6 | 6.3 | 14.5 |
| D25 | 26.6 | 6.5 | 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Li, R.; Xu, G. Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers. Buildings 2026, 16, 492. https://doi.org/10.3390/buildings16030492
Zhang J, Li R, Xu G. Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers. Buildings. 2026; 16(3):492. https://doi.org/10.3390/buildings16030492
Chicago/Turabian StyleZhang, Jinhong, Rong Li, and Guihua Xu. 2026. "Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers" Buildings 16, no. 3: 492. https://doi.org/10.3390/buildings16030492
APA StyleZhang, J., Li, R., & Xu, G. (2026). Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers. Buildings, 16(3), 492. https://doi.org/10.3390/buildings16030492
