Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (442)

Search Parameters:
Keywords = callus culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4885 KiB  
Article
Multiplication of Axillary Shoots of Adult Quercus robur L. Trees in RITA® Bioreactors
by Paweł Chmielarz, Conchi Sánchez, João Paulo Rodrigues Martins, Juan Manuel Ley-López, Purificación Covelo, María José Cernadas, Anxela Aldrey, Saleta Rico, Jesús María Vielba, Bruce Christie and Nieves Vidal
Forests 2025, 16(8), 1285; https://doi.org/10.3390/f16081285 - 6 Aug 2025
Abstract
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the [...] Read more.
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the influence of the explant type, the culture medium, shoot support and number of immersions. Variables evaluated included the number of normal and hyperhydric shoots, shoot length, multiplication coefficient and number of rootable shoots per explant. All genotypes could be cultured in temporary immersion. Basal stem sections attached to callus grew better than apical sections and developed less hyperhydricity. For long-term cultivation, Gresshoff and Doy medium was the best of the three media evaluated. All genotypes produced vigorous shoots suitable for rooting and acclimation. This is the first protocol to proliferate adult oak trees in bioreactors, representing significant progress towards large-scale propagation of this and other related species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

11 pages, 4661 KiB  
Article
Somatic Embryogenesis in Native Peruvian Fine-Flavor Cocoa Genotypes
by Karol Rubio, Santos Leiva, Manuel Oliva, Jorge R. Diaz-Valderrama and Juan Carlos Guerrero-Abad
Int. J. Plant Biol. 2025, 16(3), 84; https://doi.org/10.3390/ijpb16030084 - 1 Aug 2025
Viewed by 92
Abstract
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration [...] Read more.
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration in ten native fine-aroma cacao genotypes (INDES-06, INDES-11, INDES-14, INDES-32, INDES-52, INDES-53, INDES-63, INDES-64, INDES-66, INDES-70) from the INDES-CES germplasm collection, under in vitro conditions using culture medium supplemented with different concentrations of Thidiazuron (0, 10, and 20 nM). Our results showed an average of 20 and 100% of callogenesis in all genotypes evaluated, but the callus development did not appear after early stages of its induction; however, primary somatic embryos were observed after 42 days after TDZ treatment in the INDES-52, INDES-53, INDES-64, INDES-66, INDES-70 genotypes. The INDES-52 genotype was more responsive to under 20 nM of TDZ, generating an average of 17 embryos per explant. This study contributes to the adaptation and establishment of a protocol for somatic embryo regeneration of fine-flavor cacao genotypes. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

21 pages, 6231 KiB  
Article
Integrating In Vitro Propagation and Machine Learning Modeling for Efficient Shoot and Root Development in Aronia melanocarpa
by Mehmet Yaman, Esra Bulunuz Palaz, Musab A. Isak, Serap Demirel, Tolga İzgü, Sümeyye Adalı, Fatih Demirel, Özhan Şimşek, Gheorghe Cristian Popescu and Monica Popescu
Horticulturae 2025, 11(8), 886; https://doi.org/10.3390/horticulturae11080886 - 1 Aug 2025
Viewed by 224
Abstract
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L [...] Read more.
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L BAP in large 660 mL jars, which yielded up to 27 shoots per explant. Optimal rooting (100%) was achieved with 0.5 mg/L NAA + 0.25 mg/L IBA in half-strength SPM. In the second phase, supervised machine learning models, including Random Forest (RF), XGBoost, Gaussian Process (GP), and Multilayer Perceptron (MLP), were employed to predict morphogenic traits based on culture conditions. XGBoost and RF outperformed other models, achieving R2 values exceeding 0.95 for key variables such as shoot number and root length. These results demonstrate that data-driven modeling can enhance protocol precision and reduce experimental workload in plant tissue culture. The study also highlights the potential for combining physiological understanding with artificial intelligence to streamline future in vitro applications in woody species. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

17 pages, 2110 KiB  
Article
Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’
by Yuexin Zhang, Qin Zhou, Ruijie Li, Miao Tian, Changlong Zhong, Xiongbo Jiang and Wei Zhang
Agronomy 2025, 15(8), 1834; https://doi.org/10.3390/agronomy15081834 - 29 Jul 2025
Viewed by 334
Abstract
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and [...] Read more.
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and genetic improvement of rose germplasm resources. A tissue culture rapid propagation system of Rosa ‘Pompon Veranda’ was established using the stem segments with shoots as the initial experimental material. The results showed that the best disinfection method was to soak the explants in 75% ethanol for 1 min, and then soak them in 15% sodium hypochlorite solution for 15 min. The contamination rate was only about 6%. The best rooting medium for tissue culture seedlings was 1/2MS with 0.1 mg∙L−1 NAA, and the rooting rate can reach around 95%. On this basis, calluses were induced by using leaflets of tissue-cultured seedlings as explants. The results showed that the optimal medium for inducing callus tissue was MS + 5.0 mg∙L−1 2,4-D, with an induction rate of 100%. The calluses were cultured in the medium of MS with 0.01 mg∙L−1 NAA, 1.5 mg∙L−1 TDZ and 0.1 mg∙L−1 GA3 for 12 days in the dark and then transferred to light conditions. The differentiation rate of callus was 10.87%. On the medium of MS with 0.5 mg∙L−1 6-BA, 0.004 mg∙L−1 NAA and 0.1 mg∙L−1 GA3, the shoots could regenerate into whole plants. This study has established an in vitro regeneration system of R. ‘Pompon Veranda’, which is a key perquisite for the subsequent establishment of its genetic transformation system. Moreover, this method will also be an important reference for studies on quality traits such as floral scent and prickles of Rosa plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 4619 KiB  
Article
Physiological and Transcriptomic Analyses Reveal Regulatory Mechanisms of Adventitious Root Formation in In Vitro Culture of Cinnamomum camphora
by Yuntong Zhang, Ting Zhang, Yongjie Zheng, Jun Wang, Chenglin Luo, Yuhua Li and Xinliang Liu
Int. J. Mol. Sci. 2025, 26(15), 7264; https://doi.org/10.3390/ijms26157264 - 27 Jul 2025
Viewed by 377
Abstract
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots [...] Read more.
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots (ARs). This study investigated AR formation from callus tissue, focusing on associated physiological changes and gene expression dynamics. During AR induction, contents of soluble sugars and proteins decreased, alongside reduced activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) decreased significantly throughout AR formation. Zeatin riboside (ZR) levels initially declined and then rose, whereas gibberellic acid (GA) levels displayed the opposite trend. Comparative transcriptomic and temporal expression analyses identified differentially expressed genes (DEGs), which were grouped into four distinct expression patterns. KEGG pathway enrichment indicated that 67 DEGs are involved in plant hormone signaling pathways and that 38 DEGs are involved in the starch and sucrose metabolism pathway. Additionally, protein–protein interaction network (PPI) analysis revealed ten key regulatory genes, which are mainly involved in auxin, cytokinin, GA, ABA, and ethylene signaling pathways. The reliability of the transcriptome data was further validated by quantitative real-time PCR. Overall, this study provides new insights into the physiological and molecular mechanisms underlying AR formation in C. camphora and offers valuable guidance for optimizing tissue culture systems. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 252
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

24 pages, 2749 KiB  
Article
Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
by Anastasia Aliesa Hermosaningtyas, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8292; https://doi.org/10.3390/app15158292 - 25 Jul 2025
Viewed by 223
Abstract
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial [...] Read more.
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial and anti-Acanthamoeba properties. Callus cultures were established under optimized and controlled conditions, and metabolomic profiling was completed using UPLC-HRMS/MS. In silico analysis, using a molecular docking approach, was applied to understand the interaction between target compounds and Acanthamoeba profilin and identify possible targets for antimicrobial properties. Untargeted metabolomic analysis confirmed the presence of valuable compounds in the callus cultures of the studied species. Biological activity was assessed through anti-Acanthamoeba and antimicrobial assays. Lychnis flos-cuculi and Kickxia elatine callus extracts showed significant inhibitory effects on Acanthamoeba trophozoites, with 87.5% and 80.1% inhibition at 10 mg/mL, respectively. In contrast, E. planum extract stimulated amoebic growth. The anti-Acanthamoeba activity correlated with the presence of ferulic acid and p-coumaric acid in L. flos-cuculi extract, and acteoside in K. elatine extract. Antibacterial testing revealed moderate activity of E. planum and K. elatine extracts against Staphylococcus spp., while Gram-negative bacteria and fungi were largely resistant. These findings highlight the potential of in vitro cultures—particularly those from L. flos-cuculi and K. elatine—as promising, sustainable sources of anti-Acanthamoeba and antimicrobial agents, warranting further investigation into their pharmacologically active constituents. Full article
Show Figures

Figure 1

14 pages, 1157 KiB  
Article
Phenolic Exudation Control and Indirect Somatic Embryogenesis of Garlic-Fruit Tree (Malania oleifera Chun & S.K. Lee)—An Endangered Woody Tree Species of Southeastern Yunnan Province, China
by Rengasamy Anbazhakan, Xin-Meng Zhu, Neng-Qi Li, Brihaspati Poudel and Jiang-Yun Gao
Plants 2025, 14(14), 2186; https://doi.org/10.3390/plants14142186 - 15 Jul 2025
Viewed by 322
Abstract
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect [...] Read more.
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect somatic embryogenesis in M. oleifera by alleviating tissue browning. Internodes and leaves obtained from seedlings were used as explants. Antioxidant pre-treatment (ascorbic acid, AA) followed by different carbon sources (sucrose, maltose, glucose, and fructose) and plant growth regulators in various concentrations and combinations were employed in Woody Plant Medium (WPM) to alleviate explant browning and induce callus formation from the explants. AA pre-treatment and subsequent culture on maltose at a concentration of 116.8 mM were optimal for controlling phenolic exudation on >90% of both explants. The highest responses of 53.77% and 57.43% for embryogenic calli were induced from internode and leaf explants, respectively. The highest responses, 85.22% and 93.80%, were observed for somatic embryos that matured into the globular, heart-shaped and torpedo stages at different percentages on NAA 2.5 mg/L in combination with BA 1.0 mg/L for both explants. The matured somatic embryos were finally germinated at a maximum concentration of GA3, 2.0 mg/L. All plantlets were successfully hardened and acclimatized under culture room conditions and then transferred to the greenhouse. The current study suggests an efficient protocol for indirect somatic embryogenesis by alleviating phenolic exudation from the explants of M. oleifera. This first successful report of in vitro culture establishment in M. oleifera may offer an effective alternative measure to conserve this species and provide a system for analyzing bioactive chemicals and for use in the oil industry. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 352
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

14 pages, 2762 KiB  
Article
Highly Efficient Regeneration of Bombax ceiba via De Novo Organogenesis from Hypocotyl and Bud Explants
by Yamei Li, Qionghai Jiang, Lisha Cha, Fei Lin, Fenling Tang, Yong Kang, Guangsui Yang, Surong Huang, Yuhua Guo and Junmei Yin
Plants 2025, 14(13), 2033; https://doi.org/10.3390/plants14132033 - 2 Jul 2025
Viewed by 322
Abstract
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo [...] Read more.
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo organogenesis system for Bombax ceiba, incorporating both indirect and direct regeneration pathways. The optimal basal medium used throughout the protocol was ½ MS supplemented with 30 g/L glucose, with all cultures maintained at 26–28 °C. For the indirect pathway, callus was induced from both ends of each hypocotyl on basal medium supplemented with 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg·L−1 6-Benzylaminopurine (6-BA) under dark conditions. The induced calluses were subsequently differentiated into adventitious shoots on basal media containing 0.5 mg·L−1 Indole-3-butyric acid (IBA), 0.15 mg·L−1 Kinetin (KIN), and 1 mg·L−1 6-BA under a 16 h photoperiod, resulting in a callus induction rate of 140% and a differentiation rate of 51%. For the direct regeneration pathway, shoot buds cultured on medium with 0.5 mg·L−1 IBA and 1 mg·L−1 6-BA achieved a 100% sprouting rate with a regeneration coefficient of approximately 3.2. The regenerated adventitious shoots rooted successfully on medium supplemented with 0.5 mg·L−1 Naphthylacetic acid (NAA) and were acclimatized under greenhouse conditions to produce viable plantlets. This regeneration system efficiently utilizes sterile seedling explants, is not limited by seasonal or environmental factors, and significantly improves the propagation efficiency of Bombax ceiba. These optimized micropropagation methods also provide a robust platform for future genetic transformation studies using hypocotyls and shoot buds as explants. Full article
Show Figures

Figure 1

12 pages, 692 KiB  
Review
Current Progress on Passiflora caerulea L. In Vitro Culturing
by Pervin Halkoglu-Hristova, Alexandra Garmidolova, Teodora Yaneva and Vasil Georgiev
Sci 2025, 7(3), 90; https://doi.org/10.3390/sci7030090 - 1 Jul 2025
Viewed by 343
Abstract
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including [...] Read more.
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including seed germination and vegetative cuttings, are often inefficient due to low germination rates, susceptibility to pathogens, and slow growth. In particular, P. caerulea presents significant challenges in germination due to its slow development. In this context, in vitro cultivation is used to enable rapid, large-scale plant production while maintaining genetic fidelity. The study of Passiflora tissue cultures began in 1966 and has since attracted increasing attention from researchers around the world. However, despite growing interest, studies specifically focused on the in vitro propagation of P. caerulea remain limited. This review aims to summarize existing knowledge on the main techniques used for in vitro culturing and propagation of P. caerulea, including organogenesis, somatic embryogenesis, and callogenesis. Particular attention is paid to the key factors that influence the initiation, growth, and regeneration of cultures, including the type of explant, the composition of the media, and the environmental conditions. Advances in the in vitro cultivation of P. caerulea have greatly improved the understanding and propagation of this species. Although in vitro cultivation offers several advantages, it is crucial to conduct thorough research on the selection of explants, their age, and the appropriate culture media to ensure optimal growth and development. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)
by Shiying Zhang, Sujuan Guo and Ruijie Zheng
Agronomy 2025, 15(7), 1595; https://doi.org/10.3390/agronomy15071595 - 30 Jun 2025
Viewed by 439
Abstract
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, [...] Read more.
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, protoplast isolation, and fusion. Studies have shown that when 1.0 g yellow loose embryonic callus was inoculated into MS + 1.5 mg∙L−1 6-BA + 0.2 mg∙L−1 NAA + 0.5 mg∙L−1 2, 4-D liquid medium, a stable suspension cell line can be obtained. After further culturing for 2–4 days, protoplast isolation was performed. First, single-factor screening was conducted on the four enzymes, and then a two-factor random block was further set up to screen the enzyme combinations based on the results. We found that 1.0%cellulase R-10 + 0.5%pectolase Y-23 led to the highest protoplast yield (9.27 × 106/g FW) and the highest activity (92.49%). Furthermore, the protoplast yield could be increased to 9.47 × 106/g FW by adding 0.4 M mannitol and shaking for 8 h. The protoplasts were purified by centrifuging at 40× g for 4 min and then mixed with 30% PEG 6000 at a volume ratio of 1.5:1 for 25 min. The fusion rate could reach 70.00%. This study laid a foundation for the creation of new germplasm by Castanea mollissima Bl. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

17 pages, 770 KiB  
Article
Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis
by Maxim Sutula, Nurtai Gubaidullin, Aizhan Rakhimzhanova and Shuga Manabayeva
Int. J. Mol. Sci. 2025, 26(13), 6091; https://doi.org/10.3390/ijms26136091 - 25 Jun 2025
Viewed by 474
Abstract
Throughout human history, wild plant resources have played an invaluable role, serving as critical sources of food, medicine, and industrial materials. This study examined the callus cultures of Cistanche deserticola Y.C. Ma, a medicinal desert plant, by subjecting them to abiotic stress under [...] Read more.
Throughout human history, wild plant resources have played an invaluable role, serving as critical sources of food, medicine, and industrial materials. This study examined the callus cultures of Cistanche deserticola Y.C. Ma, a medicinal desert plant, by subjecting them to abiotic stress under controlled in vitro conditions. The secondary metabolite profiles were then analyzed using GC-MS and qTOF-UHPLC-MS. The GC-MS analysis revealed several bioactive compounds of pharmaceutical interest, such as γ-sitosterol and homovanillyl alcohol. PhGs, including echinacoside and salidroside, were quantified for the first time across 16 callus samples exposed to various stress treatments. The application of 0.1% Na2CO3 for 50 days resulted in the highest accumulation of echinacoside (13,378.9 µg/mL), and heavy metal stress notably increased salidroside levels to 27.0 µg/mL. There was a clear correlation between callus pigmentation and metabolic activity: orange and white calli produced significantly more PhGs than dark calli. These results suggest that C. deserticola callus cultures could be a sustainable, controllable platform for producing high-value secondary metabolites. This reinforces the importance of wild plant resources in modern science and industry. Full article
(This article belongs to the Special Issue Advances in Secondary Metabolites in Plants)
Show Figures

Figure 1

14 pages, 3551 KiB  
Article
Integration of Green and Far-Red Light with Red-Blue Light Enhances Shoot Multiplication in Micropropagated Strawberry
by Yali Li, Ping Huang, Xia Qiu, Feiyu Zhu, Hongwen Chen, Si Wang, Jiaxian He, Yadan Pang, Hui Ma and Fang Wang
Horticulturae 2025, 11(6), 701; https://doi.org/10.3390/horticulturae11060701 - 17 Jun 2025
Cited by 1 | Viewed by 367
Abstract
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured [...] Read more.
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured strawberry (Fragaria × ananassa cv. ‘Benihoppe’). After 28 days of cultivation under controlled conditions (25 °C/22 °C day/night, 50 μmol·m−2·s−1 PPFD), RBFR and RGB treatments significantly enhanced shoot multiplication (38.8% and 24.2%, respectively), plant height, and callus biomass compared to RB light. RGB elevated chlorophyll a and b by 1.8- and 1.6-fold, respectively, while RBFR increased soluble protein content by 16%. Transcriptome analysis identified 144 and 376 differentially expressed genes (DEGs) under RGB and RBFR, respectively, enriched in pathways linked to circadian rhythm, auxin transport, and photosynthesis. Far-red light upregulated light signaling and photomorphogenesis genes, whereas green light enhanced chlorophyll biosynthesis while suppressing stress-responsive genes. These findings elucidate the spectral-specific regulatory mechanisms underlying strawberry micropropagation and provide a framework for optimizing multispectral LED systems in controlled-environment horticulture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

17 pages, 13788 KiB  
Article
In Vitro Plant Regeneration and Bioactive Metabolite Production of Endangered Medicinal Plant Atractylodes lancea (Thunb.) DC
by Chengcai Zhang, Xiaoyu Dai, Qi Li, Yang Ge, Chuanzhi Kang, Dehua Wu, Jiahui Sun, Yiheng Wang, Zekun Zhang and Sheng Wang
Horticulturae 2025, 11(6), 691; https://doi.org/10.3390/horticulturae11060691 - 16 Jun 2025
Viewed by 895
Abstract
The rhizome of Atractylodes lancea (Thunb.) DC. is a traditional Chinese medicine used extensively owing to its antimicrobial properties. It is utilized to treat nyctalopia and problems related to the gastrointestinal tract. However, its yield is limited because of its endangered status, long [...] Read more.
The rhizome of Atractylodes lancea (Thunb.) DC. is a traditional Chinese medicine used extensively owing to its antimicrobial properties. It is utilized to treat nyctalopia and problems related to the gastrointestinal tract. However, its yield is limited because of its endangered status, long growth period, and restricted reproductive ability. Ancillary approaches have not been established to ensure sustainable resource utilization by applying efficient plant regeneration technologies and producing bioactive metabolites via genome editing. This study reports the effects of explants, hormones, and culture conditions on embryogenic callus induction, plant regeneration, adventitious and hairy root cultivation, and essential oil production. Embryogenic calli were successfully induced in MS and 2.0 mg/L 2,4-D and 1.0 mg/L NAA and 1/2MS medium supplemented with 4.0 mg/L 6-BA and 0.4 mg/L NAA, which were optimal for callus differentiation. Maximum proliferation (12-fold) of cluster buds was observed with a select combination of hormones [NAA (0.2 mg/L) and 6-BA (2.0 mg/L)]. “Efficient plant regeneration and bioactive metabolite production” can provide technical support for the protection and sustainable utilization of A. lancea germplasm resources in terms of resource preservation and new variety breeding, natural product production, and industrial breeding of medicinal plants. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

Back to TopTop