Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis
Abstract
1. Introduction
2. Results
2.1. Identification of Secondary Metabolites in C. deserticola Callus Tissues by GC-MS
2.2. Identification and Quantification of PhGs by qTOF UHPLC-MS
2.3. PhG Accumulation in Relation to Callus Color
3. Discussion
3.1. Compounds of Pharmaceutical Interest
3.2. PhG Accumulation in Callus Tissues Depends on Cultivation Conditions
3.3. Callus Color Correlates with PhG Accumulation
4. Materials and Methods
4.1. Research Objects and Plant Collection Sites
4.2. In Vitro Cell and Tissue Culture
4.3. Lyophilization
4.4. Extraction of Secondary Metabolites
4.5. GC-MS Analysis
4.6. UHPLC-MS Analysis of PhGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gemejiyeva, N.G.; Grudzinskaya, L.M. Current State and Prospects for Studies on the Diversity of Medicinal Flora in Kazakhstan. In Vegetation of Central Asia and Environs; Egamberdieva, D., Öztürk, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 239–262. [Google Scholar]
- Sarsenbayev, K.N. Medicinally Important Plants of Kazakhstan. In Vegetation of Central Asia and Environs; Egamberdieva, D., Öztürk, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 263–289. [Google Scholar]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. In Bioorganic Phase in Natural Food: An Overview; Roopan, S.M., Madhumitha, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 135–156. [Google Scholar]
- Ofoedum, A.F.; Uyanwa, N.C.; Chikelu, E.C.; Iroagba, L.N.; Ugwoezuonu, J.N.; Anaeke, E.J.; Odeyemi, T.A.; Okezie, F.P.; Nwuka, M.U. Primary and Secondary Metabolites as Products of Microbial Metabolism: Uses and Application in Foods, Pharmaceutical and Allied Industries. A Review. Eur. J. Appl. Sci. Eng. Technol. 2024, 2, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Lessa, O.A.; Reis, N.D.S.; Leite, S.G.F.; Gutarra, M.L.E.; Souza, A.O.; Gualberto, S.A.; de Oliveira, J.R.; Aguiar-Oliveira, E.; Franco, M. Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids. Food Sci. Biotechnol. 2018, 27, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kawatra, A.; Gupta, S.; Dhankhar, R.; Singh, P.; Gulati, P. Application of Phytochemicals in Therapeutic, Food, Flavor, and Cosmetic Industries. In Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics; Swamy, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2022; pp. 85–108. [Google Scholar]
- Bhatla, S.C.; Lal, M.A. Secondary Metabolites. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer Nature: Singapore, 2023; pp. 765–808. [Google Scholar]
- Arnao, M.B.; Hernández-Ruiz, J.; Cano, A.; Reiter, R.J. Melatonin and Carbohydrate Metabolism in Plant Cells. Plants 2021, 10, 1917. [Google Scholar] [CrossRef]
- Crozier, A.; Yokota, T.; Jaganath, I.B.; Marks, S.; Saltmarsh, M.; Clifford, M.N. Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-based Dietary Components. In Plant Secondary Metabolites; Wiley: Hoboken, NJ, USA, 2006; pp. 208–302. [Google Scholar]
- Maran, S.; Yeo, W.W.Y.; Lim, S.-H.E.; Lai, K.-S. Plant Secondary Metabolites for Tackling Antimicrobial Resistance: A Pharmacological Perspective. In Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches; Kumar, V., Shriram, V., Paul, A., Thakur, M., Eds.; Springer Nature: Singapore, 2022; pp. 153–173. [Google Scholar]
- Durairaj, T.; Alagappan, C.; Suresh, S.S.R.; Ramasamy, V. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites; Ramasamy, V., Suresh, S.S.R., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar]
- Petrosyan, K.; Thijs, S.; Piwowarczyk, R.; Ruraż, K.; Kaca, W.; Vangronsveld, J. Diversity and potential plant growth promoting capacity of seed endophytic bacteria of the holoparasite Cistanche phelypaea (Orobanchaceae). Sci. Rep. 2023, 13, 11835. [Google Scholar] [CrossRef]
- Abou-Raya, M.A.; El-Sharkawy, M.A.; El-Taife, A. Host-parasite Relationship in Cistanche spp. Hoffmgg. et Link. Libyan J. Agric. 2023, 10, 11–22. [Google Scholar]
- Miao, Y.; Zhang, X.; Pei, J.; Liu, C.; Huang, L. Adaptive bacterial and fungal matching between a parasitic plant and its host: A case of Cistanche deserticola and Haloxylon ammodendron. Ind. Crop. Prod. 2023, 191, 115932. [Google Scholar] [CrossRef]
- Piwowarczyk, R.; Ochmian, I.; Lachowicz, S.; Kapusta, I.; Sotek, Z.; Błaszak, M. Phytochemical parasite-host relations and interactions: A Cistanche armena case study. Sci. Total Environ. 2020, 716, 137071. [Google Scholar] [CrossRef]
- Qasem, J.R. Parasitic Weeds of Jordan: Species, Hosts, Distribution and Management (Part 1: Root Parasites; Orobanchaceae, Santalaceae & Cynomoriaceae); Bentham Science Publishers: Singapore, 2022. [Google Scholar]
- Feng, Z.; Miao, Y.; Sun, X.; Zheng, Y.; Luo, G.; Pei, J.; Huang, L. Characterization of microbial community assembly in parasitic plant systems and the influence of microorganisms on metabolite accumulation in parasitic plants: Case study of Cistanche salsa and Kalidium foliatum. Front. Microbiol. 2024, 15, 1279536. [Google Scholar] [CrossRef]
- Rehman, S. Some studies on the mode of parasitization of Cistanche tubulosa on various host plants. Pak. J. Plant Sci. 2009, 15, 1545–1552. [Google Scholar]
- Song, Y.; Zeng, K.; Jiang, Y.; Tu, P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med. Res. Rev. 2021, 41, 1539–1577. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, H.; Gu, L.; Gao, J.; Tzeng, C.-M. Herba Cistanche (Rou Cong-Rong): One of the Best Pharmaceutical Gifts of Traditional Chinese Medicine. Front. Pharmacol. 2016, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.-N.; Zeng, K.-W.; Song, Y.-L.; Jiang, Y.; Tu, P.-F. Phytochemical and Pharmacological Overview of Cistanche Species. In Recent Advances in Polyphenol Research; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 313–341. [Google Scholar]
- Fu, Z.; Fan, X.; Wang, X.; Gao, X. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property. J. Ethnopharmacol. 2018, 219, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhou, B.; Wang, X.; Bi, Y.; Guo, W.; Wang, J.; Yao, R.; Li, M. The Quality Monitoring of Cistanches Herba (Cistanche deserticola Ma): A Value Chain Perspective. Front. Pharmacol. 2021, 12, 782962. [Google Scholar] [CrossRef]
- Niazian, M.; Torkamaneh, D.; Hesami, M. Editorial: Advances in biotechnology-based breeding of medicinal plants. Front. Plant Sci. 2023, 14, 1228951. [Google Scholar] [CrossRef]
- Moraes, R.M.; Cerdeira, A.L.; Lourenço, M.V. Using Micropropagation to Develop Medicinal Plants into Crops. Molecules 2021, 26, 1752. [Google Scholar] [CrossRef]
- Sanyal, R.; Nandi, S.; Pandey, S.; Das, T.; Kaur, P.; Konjengbam, M.; Kant, N.; Rahman, M.H.; Mundhra, A.; Kher, M.M.; et al. In vitro propagation and secondary metabolite production in Gloriosa superba L. Appl. Microbiol. Biotechnol. 2022, 106, 5399–5414. [Google Scholar] [CrossRef]
- Trung, L.N.T.; An, N.H.; Nguyen, P.T.T.; Quang, H.N.; Quang, H.T.; Thi, T.N.M.; Thao, H.X.; Thang, T.N.; Phuong, T.T.B. Identification and micropropagation of Homalomena pendula, an endangered medicinal plant. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 158, 40. [Google Scholar] [CrossRef]
- Mežaka, I.; Kļaviņa, D.; Kaļāne, L.; Kronberga, A. Large-Scale In Vitro Propagation and Ex Vitro Adaptation of the Endangered Medicinal Plant Eryngium maritimum L. Horticulturae 2023, 9, 271. Horticulturae 2023, 9, 271. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D.; Cui, C.; Hao, J.; Zhang, Z.; Guo, L. Research Progress and Trends of Phenylethanoid Glycoside Delivery Systems. Foods 2022, 11, 769. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, B. Phenylethanoid Glycosides: Research Advances in Their Phytochemistry, Pharmacological Activity and Pharmacokinetics. Molecules 2016, 21, 991. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.-Y.; Li, M.-X.; Lin, T.; Qiu, Y.; Zhu, Y.-T.; Li, X.-L.; Tao, W.-D.; Wang, P.; Ren, X.-X.; Chen, L.-P. A review on the structure and pharmacological activity of phenylethanoid glycosides. Eur. J. Med. Chem. 2021, 209, 112563. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Khan, T.; Ahmad, N.; Zaman, G.; Khan, T.; Ahmad, W.; Batool, S.; Hussain, Z.; Drouet, S.; Hano, C.; et al. Chemical Elicitors-Induced Variation in Cellular Biomass, Biosynthesis of Secondary Cell Products, and Antioxidant System in Callus Cultures of Fagonia indica. Molecules 2021, 26, 6340. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, B.; Mujib, A.; Syeed, R.; Mamgain, J.; Malik, M.Q.; Birat, K.; Dewir, Y.H.; Magyar-Tábori, K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2. Metabolites 2024, 14, 127. [Google Scholar] [CrossRef]
- Vilas-Boas, A.C.M.; Tarelho, L.A.C.; Moura, J.M.O.; Gomes, H.G.M.F.; Marques, C.C.; Pio, D.T.; Nunes, M.I.S.; Silvestre, A.J.D. Methodologies for bio-oil characterization from biomass pyrolysis: A review focused on GC-MS. J. Anal. Appl. Pyrolysis 2025, 185, 106850. [Google Scholar] [CrossRef]
- Gould, O.; Nguyen, N.; Honeychurch, K.C. New Applications of Gas Chromatography and Gas Chromatography-Mass Spectrometry for Novel Sample Matrices in the Forensic Sciences: A Literature Review. Chemosensors 2023, 11, 527. [Google Scholar] [CrossRef]
- Han, N.S.; Lim, J.S. Review of Gas-Chromatographic Measurement Methodologies for Atmospheric Halogenated Greenhouse Gases. Crit. Rev. Anal. Chem. 2024, 55, 656–669. [Google Scholar] [CrossRef]
- Lesellier, E.; Lefebvre, T.; Destandau, E. Recent developments for the analysis and the extraction of bioactive compounds from Rosmarinus officinalis and medicinal plants of the Lamiaceae family. TrAC Trends Anal. Chem. 2021, 135, 116158. [Google Scholar] [CrossRef]
- Yeo, J.; Kang, J.; Kim, H.; Moon, C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods 2023, 12, 3177. [Google Scholar] [CrossRef]
- Piechocka, J.; Wieczorek, M.; Głowacki, R. Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int. J. Mol. Sci. 2020, 21, 9252. [Google Scholar] [CrossRef]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef]
- Tao, L.; Liang, Z.F.; Miao, L.; Guo, Y.J.; Li, Y.; Liu, Y.L.; Fang, D.M.; Yang, Z.J. Mechanism of salidroside against coronary artery disease by network pharmacology analysis. BMC Complement. Med. Ther. 2023, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, L.; Xiong, D.; Zhan, Y.; Liu, J.; Ouyang, L.; Chen, W.; Lu, Z.; Gao, T.; Li, X.; et al. Salidroside affects the Th17/Treg cell balance in aplastic anemia via the STAT3/HIF-1α/RORγt pathway. Redox Rep. Commun. Free Radic. Res. 2023, 28, 2225868. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Xu, X.; Tong, H.; Wang, X.; Chen, Y.; Ding, Y.; Zhang, S.; Ju, W.; Fu, C.; Li, Z.; et al. Salidroside inhibits platelet function and thrombus formation through AKT/GSK3β signaling pathway. Aging 2020, 12, 8151–8166. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Cao, X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol. Ther. 2024, 25, 2322206. [Google Scholar] [CrossRef]
- Jiang, T.F.; Ou, Q.Y.; Shi, Y.P. Separation and determination of phenylpropanoid glycosides from Pedicularis species by capillary electrophoresis. J. Chromatogr. A 2003, 986, 163–167. [Google Scholar] [CrossRef]
- Di, D.L.; Chen, J.; Shi, Y.P. Determination of Phenylpropanoid Glycosides in Chinese Herbal Extracts from Pedicularis Species by HPLC. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 2235–2245. [Google Scholar] [CrossRef]
- Bian, P.; Liu, C.; Hu, W.; Ding, Y.; Qiu, S.; Li, L. Echinacoside Suppresses the Progression of Breast Cancer by Downregulating the Expression of miR-4306 and miR-4508. Integr. Cancer Ther. 2021, 20, 15347354211062639. [Google Scholar] [CrossRef]
- Albalawi, A.Z.; Alatawi, A.S.; Al-Atwi, S.M.; Alhwyty, L.S.; Alharbi, K.M.; Alshehri, S.A.; Almarwani, W.A.; Aljohani, K.K.; Hassan, H.M.; Al-Gayyar, M.M.H. Echinacoside ameliorates hepatic fibrosis and tumor invasion in rats with thioacetamide-induced hepatocellular carcinoma. Biomol. Biomed. 2024, 24, 1186–1198. [Google Scholar] [CrossRef]
- Tureyen, A.; Demirel, H.H.; Demirkapi, E.N.; Eryavuz, A.M.; Ince, S. Tubuloside A, a phenylethanoid glycoside, alleviates diclofenac induced hepato-nephro oxidative injury via Nrf2/HO-1. J. Cell. Mol. Med. 2023, 27, 3404–3413. [Google Scholar] [CrossRef]
- Sciandra, F.; Bottoni, P.; De Leo, M.; Braca, A.; Brancaccio, A.; Bozzi, M. Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine Skeletal Muscle Cell Line. Int. J. Mol. Sci. 2023, 24, 15276. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Matsuoka, K.; Fuji, Y.; Nishizaki, Y.; Masumoto, N.; Sugimoto, N.; Sato, K.; Matsufuji, H. Development of an HPLC method with relative molar sensitivity based on 1H-qNMR to determine acteoside and pedaliin in dried sesame leaf powders and processed foods. PLoS ONE 2020, 15, e0243175. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, Y.; Zou, H.; Wang, Y.; Xu, Y.; Wang, L.; Wang, B.; Yan, M.; Leng, X. Unraveling the efficacy of verbascoside in thwarting MRSA pathogenicity by targeting sortase A. Appl. Microbiol. Biotechnol. 2024, 108, 360. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, X.; Luo, X.; Su, M.; Xu, R.; Chen, J.; Ding, Y.; Shi, Y. An Integrated Approach to Characterize Intestinal Metabolites of Four Phenylethanoid Glycosides and Intestinal Microbe-Mediated Antioxidant Activity Evaluation In Vitro Using UHPLC-Q-Exactive High-Resolution Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Front. Pharmacol. 2019, 10, 826. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Yang, S.; Xiao, Y.; Guan, H.; Yue, X.; Wang, X.; Li, X. The Difference of Chemical Components and Biological Activities of the Raw Products slices and the Wine Steam-Processed Product from Cistanche deserticola. Evid. Based Complement. Altern. Med. 2019, 2019, 2167947. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Guan, H.; Xu, R.; Luo, X.; Su, M.; Chang, X.; Tan, W.; Chen, J.; Shi, Y. Comparison of the Chemical Profiles and Antioxidant Activities of Different Parts of Cultivated Cistanche deserticola Using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Molecules 2017, 22, 2011. [Google Scholar] [CrossRef]
- Zhou, S.-q.; Feng, D.; Zhou, Y.-x.; Zhao, J.; Zhao, J.-y.; Guo, Y.; Yan, W.-j. HS-GC-IMS detection of volatile organic compounds in cistanche powders under different treatment methods. LWT 2022, 165, 113730. [Google Scholar] [CrossRef]
- Xu, R.; Sun, S.; Zhu, W.; Xu, C.; Liu, Y.; Shen, L.; Shi, Y.; Chen, J. Multi-step infrared macro-fingerprint features of ethanol extracts from different Cistanche species in China combined with HPLC fingerprint. J. Mol. Struct. 2014, 1069, 236–244. [Google Scholar] [CrossRef]
- Hui, R.; Hou, D.; Li, T.; Guan, C. Analysis of volatile components in Herba Cistanches. Fenxi Huaxue 2003, 31, 601–603. [Google Scholar]
- Ouyang, J.; Wang, X.D.; Zhao, B.; Wang, Y.C. Formation of phenylethanoid glycosides by Cistanche deserticola callus grown on solid media. Biotechnol. Lett. 2003, 25, 223–225. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Liu, Y.; Mo, T.; Wang, X.; Song, Y.; Chen, Q.; Zhao, Y.; Shi, S.; Tu, P. Cell culture establishment and regulation of two phenylethanoid glycosides accumulation in cell suspension culture of desert plant Cistanche tubulosa. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 107–118. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef] [PubMed]
- Pielorz, S.; Fecka, I.; Bernacka, K.; Mazurek, S. Quantitative Determination of Polyphenols and Flavonoids in Cistus × incanus on the Basis of IR, NIR and Raman Spectra. Molecules 2023, 28, 161. [Google Scholar] [CrossRef]
- Hao, M.H.; Zhang, F.; Liu, X.X.; Zhang, F.; Wang, L.J.; Xu, S.J.; Zhang, J.H.; Ji, H.L.; Xu, P. Qualitative and quantitative analysis of catechin and quercetin in flavonoids extracted from Rosa roxburghii Tratt. Trop. J. Pharm. Res. 2018, 17, 71–76. [Google Scholar] [CrossRef]
- Rami, E.; Patel, I. Quantitative analysis of total phenols and flavonoids in in vivo and in vitro samples of Oroxylum indicum (L.) Vent. Asian J. Pharm. Clin. Res. 2015, 8, 202–204. [Google Scholar]
- Sutula, M.; Gubaidullin, N.; Rakhimzhanova, A.; Manabayeva, S. Identification of Secondary Metabolites by Gas Chromatography with Mass Spectroscopy in Callus tissues of Cistanche deserticola Yc Ma. Eurasian J. Appl. Biotechnol. 2024, 21–39. [Google Scholar] [CrossRef]
- Shaaban, M.T.; Ghaly, M.F.; Fahmi, S.M. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 2021, 61, 557–568. [Google Scholar] [CrossRef]
- Gideon, V.A. GC-MS analysis of phytochemical components of Pseudoglochidion anamalayanum Gamble: An endangered medicinal tree. Asian J. Plant Sci. Res. 2015, 5, 36–41. [Google Scholar]
- Jones, P.J.; AbuMweis, S.S. Phytosterols as functional food ingredients: Linkages to cardiovascular disease and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 147–151. [Google Scholar] [CrossRef]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic triterpene distribution in various plants—Rich sources for a new group of multi-potent plant extracts. Molecules 2009, 14, 2016–2031. [Google Scholar] [CrossRef] [PubMed]
- Wightman, R.M.; Amatore, C.; Engstrom, R.C.; Hale, P.D.; Kristensen, E.W.; Kuhr, W.G.; May, L.J. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 1988, 25, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Kirimura, K.; Cao, W.; Onda, Y.; Yoshioka, I.; Ishii, Y. Selective and high-yield production of ethyl α-d-glucopyranoside by the α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomerase. J. Biosci. Bioeng. 2022, 134, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Musa, A.; El-Massry, K.F.; El-Ghorab, A.H.; Farouk, A.; Ali, H.M.; Abdelgawad, M.A.; Naguib, I.A.; Mostafa, E.M. Volatile Constituents of Cistanche tubulosa and Their Antioxidant and Antimicrobial Potentials. Rec. Nat. Prod. 2021, 15, 301–312. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Gamborg, O.; Miller, R.; Ojima, K. Nutrient Requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Bekkuzhina, S.; Rakhimzhanova, A.; Talkanbayeva, A.; Manabayeva, S. Индукция каллусoгенеза в культуре изoлирoванных семян Cistanche deserticola. Bull. LN Gumilyov Eurasian Natl. Univ. Biosci. Ser. 2020, 133, 44–52. [Google Scholar] [CrossRef]
- Mir, B.A.; Mir, S.A.; Khazir, J.; Tonfack, L.B.; Cowan, D.A.; Vyas, D.; Koul, S. Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal. Ind. Crop. Prod. 2015, 74, 1008–1016. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Cichoński, J.; Michalik, P.; Chrzanowski, G. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules 2022, 28, 241. [Google Scholar] [CrossRef]
- Beshamgan, E.S.; Sharifi, M.; Zarinkamar, F. Crosstalk among polyamines, phytohormones, hydrogen peroxide, and phenylethanoid glycosides responses in Scrophularia striata to Cd stress. Plant Physiol. Biochem. 2019, 143, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Fornazier, R.F.; Ferreira, R.R.; Pereira, G.J.; Molina, S.M.; Smith, R.J.; Lea, P.J.; Azevedo, R.A. Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes. Plant Cell Tissue Organ Cult. 2002, 71, 125–131. [Google Scholar] [CrossRef]
- ElNaker, N.A.; Daou, M.; Ochsenkühn, M.A.; Amin, S.A.; Yousef, A.F.; Yousef, L.F. A metabolomics approach to evaluate the effect of lyophilization versus oven drying on the chemical composition of plant extracts. Sci. Rep. 2021, 11, 22679. [Google Scholar] [CrossRef] [PubMed]
- De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Niessen, W.M. Liquid Chromatography-Mass Spectrometry; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
Identified Compounds | Percentage Content, % | ||||
---|---|---|---|---|---|
No. 6, Stolon, Control | No. 36, B5, 0.1% NaCl, 50 days (Dark) | No. 40, B5, 50 days (Dark) | No. 41, B5, 50 days (Orange) | No. 42, B5, 50 days (White) Control | |
Phenols | |||||
Phenol | - | 0.77 | 0.69 | 0.82 | 0.97 |
Phenol, 4-ethyl-2-methoxy- | - | - | - | 0.36 | 0.59 |
p-Cresol | - | - | - | 1.46 | 0.63 |
Benzene, 4-ethenyl-1,2-dimethoxy- | 6.7 | - | - | - | - |
Phenol, 2,4-dichloro- | - | - | 0.48 | 0.55 | 0.53 |
2-Methoxy-4-vinylphenol | - | - | - | 4.55 | 2.14 |
Phenol, 2,6-dimethoxy- | - | 0.99 | 0.59 | 2.7 | 1.08 |
Phenol, 2,4-bis(1,1-dimethylethyl)- | 8.3 | 2.27 | 1.7 | 1.88 | 1.44 |
Phenol, 2,6-dimethoxy-4-(2-propenyl)- | - | 1.51 | 1.02 | 7.33 | 1.43 |
Benzeneethanol, 4-hydroxy- | - | 1.59 | 1.44 | 1.04 | 0.71 |
Hydroquinone | - | - | - | - | 0.42 |
Ethers | |||||
Dodecyl acrylate | - | 0.6 | 0.66 | 0.42 | 0.38 |
Glutaric acid, butyl undecyl ester | 2.9 | - | - | - | - |
Hexadecanoic acid, methyl ester | 11.8 | 4.26 | 4.37 | 4.42 | 4.86 |
Hexadecanoic acid, ethyl ester | 8.5 | - | - | - | - |
Heptadecanoic acid, 16-methyl-, methyl ester | 10.5 | 2.34 | 1.86 | 1.41 | 1.15 |
13-Octadecenoic acid, methyl ester | - | 2.11 | 1.79 | 1.52 | - |
11-Octadecenoic acid, methyl ester, (Z)- | - | - | - | - | 1.45 |
12-Octadecenoic acid, methyl ester | - | - | - | 0.55 | - |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | - | 4.12 | 0.24 | - | 4.29 |
Methyl 9-cis,11-trans-octadecadienoate | - | - | - | 3.6 | - |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | - | - | - | - | - |
Propanoic acid, 3-mercapto-, dodecyl ester | - | 0.58 | 0.59 | - | - |
9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | - | 0.86 | 0.59 | 0.83 | 0.83 |
Acetic acid n-octadecyl ester | - | 0.64 | - | - | - |
Diethylene glycol monododecyl ether | 13.2 | 0.88 | 1.92 | 0.36 | - |
Triethylene glycol monododecyl ether | - | 2.77 | - | - | - |
Heptaethylene glycol monododecyl ether | - | - | 2.42 | 1.95 | - |
Eicosanoic acid, methyl ester | - | - | 0.62 | - | - |
Phthalic acid, butyl hept-4-yl ester | - | - | 0.45 | - | - |
Dibutyl phthalate | - | 0.53 | - | - | - |
Di-n-octyl phthalate | - | - | 2.14 | - | - |
1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | - | - | 9.37 | - | - |
Glucosides | |||||
1,4:3,6-Dianhydro-α-d-glucopyranose | - | - | - | 0.58 | 0.59 |
β-D-Glucopyranose, 1,6-anhydro- | - | - | 5.25 | 8.15 | 8.23 |
Ethyl α-d-glucopyranoside | - | 44.3 | 24.94 | 23.71 | 41.78 |
Sucrose | - | - | - | 1.82 | - |
Alcohols | |||||
Ethanol, 2,2′-oxybis- | - | 0.86 | 0.66 | - | - |
1-Undecanol | - | 1.37 | - | 1.16 | - |
5-Thiazoleethanol, 4-methyl- | - | - | - | 3.38 | 2.16 |
1-Hexadecanol | - | 0.9 | 1.24 | 0.6 | - |
Homovanillyl alcohol | 3.9 | 1.23 | 0.9 | 3.91 | 2.8 |
Glycols | |||||
Triethylene glycol | 3.3 | - | 1.81 | - | - |
Tetraethylene glycol | 11.5 | 3.79 | 2.1 | 2.19 | 1.69 |
Tri(propylene glycol) propyl ether | - | 0.62 | - | - | - |
Triethylene glycol monododecyl ether | - | 6.73 | 3.88 | 1.72 | - |
Pentaethylene glycol | - | - | - | 2.04 | 1.8 |
Hexaethylene glycol | - | 3.46 | - | - | - |
Acids | |||||
Hexadecanoic acid | - | 0.44 | 3.48 | 4.55 | 3.34 |
9,12-Octadecadienoic acid (Z,Z)- | - | 3.5 | - | 2.15 | 2.98 |
Niacinamide | - | - | - | 1.47 | 1.05 |
Ketones | |||||
Ethanone, 1-(2-hydroxy-5-methylphenyl)- | 9.4 | 1.65 | 0.8 | - | - |
3′,5′-Dimethoxyacetophenone | - | - | - | 1.88 | 0.71 |
Ethanone, 1-(3,4-dimethoxyphenyl)- | - | 0.92 | - | - | - |
Furans | |||||
Benzofuran, 2,3-dihydro- | 5.4 | 0.82 | 0.5 | 1.2 | 0.74 |
Phytosterols | |||||
γ-Sitosterol | - | - | 19.01 | - | - |
Pyrroles | |||||
3-Methyl-4-phenyl-1H-pyrrole | - | 0.57 | - | - | 0.59 |
1H-Pyrrole, 2-phenyl- | - | - | - | 1.15 | 0.97 |
Lactones | |||||
Pantolactone | - | 0.54 | - | 0.85 | 0.75 |
Others | |||||
Octadecanal, 2-bromo- | 4.8 | - | - | - | - |
2-(3,4-Dimethoxyphenyl)-6-methyl-3,4-chromanediol | - | - | 0.63 | - | - |
3,7,11,14,18-Pentaoxa-2,19-disilaeicosane, 2,2,19,19-tetramethyl- | - | 1.49 | - | - | - |
Succinimide | - | - | - | - | 0.45 |
Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- | - | - | 1.88 | 1.17 | 1.61 |
2-Piperidinone, 1-(3,4,5,6-tetrahydro-2-pyridinyl)- | - | - | - | - | 4.58 |
Desaspidinol | - | - | - | 0.54 | 0.27 |
No. | Sample No. | Growing Conditions | PhG Concentration (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stress | Culture Medium | Conditions | Tissue Color | Days of Cultivation | Acetylacteoside | Echinacoside | Salidroside | Tubuloside | Verbascoside | ||
1. | 6 | Control | Stolon | - | - | - | 75.8 | 702.5 | 0.6 | 3.0 | 28.1 |
2. | 15 | NaCl | В5 | 0.1% | White | 20 | 20.3 | 10,175.1 | 4.1 | 0 | 0 |
3. | 17 | Na2CO3 | В5 | 0.1% | White | 20 | 10.5 | 10,937.6 | 5.4 | 0 | 0 |
4. | 36 | NaCl | В5 | 0.1% | Dark | 50 | 5.1 | 3851.3 | 2.7 | 0.9 | 13.8 |
5. | 37 | NaCl | В5 | 0.1% | White | 50 | 27.1 | 10,615.4 | 1.8 | 8.3 | 51.8 |
6. | 38 | Na2CO3 | В5 | 0.1% | Orange | 50 | 46.3 | 13,378.9 | 2.5 | 42.6 | 61.6 |
7. | 40 | No stress | В5 | Standard | Dark | 50 | 2.0 | 408.7 | 6.2 | 0 | 0 |
8. | 41 | No stress | В5 | Standard | Orange | 50 | 57.8 | 8102.0 | 1.6 | 47.9 | 84.7 |
9. | 42 | No stress | В5 | Standard | White | 50 | 7.9 | 5499.0 | 1.4 | 2.0 | 32.0 |
10. | 45 | Cold | В5 | +4 °C | White | 3 | 0 | 10.9 | 13.5 | 0 | 0.1 |
11. | 50 | Cold | В5 | +4 °C | White | 5 | 0 | 18.8 | 19.0 | 0 | 0.1 |
12. | 55 | Cold | В5 | +4 °C | White | 7 | 0 | 12.9 | 13.3 | 0 | 0.1 |
13. | 65 | Cu(NO3)2 | В5 | 0.25 mM | White | 5 | 0 | 17.8 | 23.7 | 0 | 0.1 |
14. | 70 | CdCl2 | В5 | 0.15 mM | White | 5 | 0.3 | 144.6 | 18.5 | 0.3 | 0.8 |
15. | 72 | Cu(NO3)2 | В5 | 0.25 mM | White | 7 | 0 | 0.1 | 27.0 | 0 | 0.1 |
16. | 77 | CdCl2 | В5 | 0.15 mM | White | 7 | 2.3 | 1641.6 | 9.6 | 3.7 | 9.2 |
Time (min) | A (%) | B (%) |
---|---|---|
0 | 95 | 5 |
2 | 95 | 5 |
4 | 85 | 15 |
6 | 80 | 20 |
10 | 65 | 35 |
18 | 65 | 35 |
18.1 | 95 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutula, M.; Gubaidullin, N.; Rakhimzhanova, A.; Manabayeva, S. Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis. Int. J. Mol. Sci. 2025, 26, 6091. https://doi.org/10.3390/ijms26136091
Sutula M, Gubaidullin N, Rakhimzhanova A, Manabayeva S. Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis. International Journal of Molecular Sciences. 2025; 26(13):6091. https://doi.org/10.3390/ijms26136091
Chicago/Turabian StyleSutula, Maxim, Nurtai Gubaidullin, Aizhan Rakhimzhanova, and Shuga Manabayeva. 2025. "Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis" International Journal of Molecular Sciences 26, no. 13: 6091. https://doi.org/10.3390/ijms26136091
APA StyleSutula, M., Gubaidullin, N., Rakhimzhanova, A., & Manabayeva, S. (2025). Stress-Induced Secondary Metabolite Profiling in Cistanche deserticola Callus Cultures: Insights from GC-MS and HPLC-MS Analysis. International Journal of Molecular Sciences, 26(13), 6091. https://doi.org/10.3390/ijms26136091