Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Explant Sterilization
2.2.2. Proliferation Culture
2.2.3. Rooting Culture
2.2.4. Plantlet Acclimatization and Transplanting
2.2.5. Effect of 2,4-D Concentration on Leaflets Callus Induction
2.2.6. Effect of TDZ Concentration on Callus Differentiation
2.2.7. Effect of Different Shoot-Elongation Media on Shoot Growth
2.3. Statistical Analysis
3. Results
3.1. Effect of Sterilization Treatments on Explant Contamination and Mortality
3.2. Multiplication Coefficient of R. ‘Pompon Veranda’
3.3. Effect of Different Rooting Media on Rooting Performance of R. ‘Pompon Veranda’
3.4. Plantlet Acclimatization and Transplanting
3.5. Effect of 2,4-D Concentration on Callus Induction from Leaf Explants
3.6. Effect of TDZ Concentration on Callus Differentiation
3.7. Effect of Shoot-Elongation Media on Shoot Growth
4. Discussion
4.1. Effects of Sterilization Duration and Agents on Explant Disinfection
4.2. Effects of Hormone Types and Concentrations on Shoot Proliferation
4.3. Effects of Explant Types on Callus Induction
4.4. Effects of Plant Growth Regulators on Callus Induction and Differentiation
4.5. Effects of Auxin on Rooting of Plant Tissue Culture Seedlings
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Combination Number | Composition |
---|---|
1 | MS + 1.0 mg∙L−1 ZT + 1.0 mg∙L−1 2,4-D + 0.5 mg∙L−1 IAA |
2 | MS + 0.6 mg∙L−1 TDZ + 0.4 mg∙L−1 2,4-D |
3 | MS + 1.0 mg∙L−1 BA + 0.1 mg∙L−1 NAA |
4 | MS + 1.0 mg∙L−1 BA + 0.1 mg∙L−1 NAA + 5.0 mg∙L−1 VC |
5 | MS + 10.0 mg∙L−1 6-BA |
6 | MS + 1.0 mg∙L−1 2,4-D + 0.1 mg∙L−1 6-BA |
7 | MS + 0.2 mg∙L−1 2,4-D + 0.2 mg∙L−1 6-BA |
8 | MS + 0.2 mg∙L−1 2,4-D + 5.0 mg∙L−1 6-BA |
9 | MS + 1.0 mg∙L−1 6-BA + 0.2 mg∙L−1 IBA + 0.1 mg∙L−1 GA3 |
Process Combination Number | Callus Induction Rate (%) | Callus Status |
---|---|---|
1 | 31.74 ± 3.64 b | Compact callus, light yellow, large size |
2 | 45.45 ± 6.18 a | Compact callus, light yellow, large size |
3 | 18.26 ± 2.75 cd | Light yellow callus, the granularity is noticeably looser, large size |
4 | 24.60 ± 4.95 c | Callus yellow, the particle size is noticeably looser, smaller size |
5 | 0.00 ± 0.00 e | No callus formation, browning and death of explants |
6 | 34.12 ± 1.37 b | Compact callus, yellow, white, or brown, larger size |
7 | 42.07 ± 4.95 a | Compact callus, light yellow, large in size, large size |
8 | 15.87 ± 1.38 d | Compact callus, light yellow, compact size |
9 | 6.34 ± 3.64 e | Compact callus, light yellow, compact size, some callus-forming anthers showed vitrified tissues around them, and gradually turn brown and die |
Genotypes | Type of Explant | Regeneration Pathway | References |
---|---|---|---|
96 different cultivars (Rosa hybrida) | Petiole | Organogenesis | [50] |
‘Apollo’, ‘Black Baccara’, ‘Maroussia’ and ‘Amanda’ (Rosa hybrida) | Leaf | Organogenesis | [51] |
‘Samantha’ (Rosa hybrida) | Leaf | Organogenesis | [18] |
Rosa damascena | Leaf | Organogenesis | [30] |
‘Charming’ (Rosa hybrida) | Newly formed roots from the distal end of shoots | Combination of somatic embryogenesis and organogenesis | [38] |
‘Carefree Beauty’, ‘Grand Gala’ (Rosa hybrida) ‘Red Sunblaze’ (Rosa chinensis) | Leaf | Combination of somatic embryogenesis and organogenesis | [42] |
‘Carola’ (Rosa hybrida) | Leaf | Somatic embryogenesis | [52] |
‘John F. Kennedy’ (Rosa hybrida) | Leaf | Somatic embryogenesis | [53] |
‘Old Blush’ (Rosa chinensis) | Leaf | Somatic embryogenesis | [12] |
‘Yueyuehong’ (Rosa chinensis) | Leaf | Somatic embryogenesis | [33] |
‘Old Blush’ (Rosa chinensis) | Leaf | Somatic embryogenesis | [54] |
Rosa rugosa | Cotyledons without embryonic axes, and radicles excised from zygotic embryos | Somatic embryogenesis | [55] |
‘Livin Easy’ (Rosa hybrida) | Leaf | Somatic embryogenesis | [56] |
References
- Bendahmane, M.; Dubois, A.; Raymond, O.; Bris, M.L. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013, 64, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Hiroshi, H.; Toshiyukki, O.; Watanabe, N. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Biosci. Biotechnol. Biochem. 2016, 80, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Q.; Yuan, Y.; Jiang, H.; Bao, Y.; Ning, G.; Zhao, L.; Zhou, X.; Zhou, H.; Gao, J.; Ma, N. Agrobacterium tumefaciens-mediated transformation of modern rose (Rosa hybrida) using leaf-derived embryogenic callus. Hortic. Plant J. 2021, 7, 359–366. [Google Scholar] [CrossRef]
- Xing, W.; Bao, Y.; Luo, P.; Bao, M.; Ning, G. An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa. Acta Physiol. Plant. 2014, 36, 2013–2023. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, S.C.; In, D.S.; Liu, J.R. Plant regeneration of rose (Rosa hybridia) from embryogenic cell-derived protoplasts. Plant Cell Organ. Cult. 2003, 73, 15–19. [Google Scholar] [CrossRef]
- Tian, C.; Chen, Y.; Zhao, X.; Zhao, L. Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep. 2008, 27, 823–831. [Google Scholar] [CrossRef]
- Hill, G.P. Morphogenesis of shoot primordia in cultured stem tissue of a garden rose. Nature 1967, 216, 596–597. [Google Scholar] [CrossRef]
- Dubois, L.A.M.; De Vries, D.P. The direct regeneration of adventitious buds on leaf explants of glass house growm cut rose cultivars. Acta Hortic. 1996, 424, 327–331. [Google Scholar] [CrossRef]
- Meng, L.N.; Yan, H.J.; Zhang, H.; Zhai, H.J.; Zhou, N.N.; Tang, K.X. Prelimary establishment of the regeneration system of Rosa odorata var. Gigantea. J. Yunnan Agric. Univ. 2012, 27, 870–874. [Google Scholar]
- Ren, G.F.; Wang, J.H.; Feng, H.; Li, Y.; Shi, X.B. Establishment of plant regeneration from leaves explants of Rosa hybrida. Acta Hortic. Sinica 2004, 34, 533–536. [Google Scholar]
- Bao, Y.; Liu, G.; Shi, X.; Wen, X.; Ning, G.; Liu, J.; Bao, M. Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’. Plant Cell Tiss. Org. Cult. 2012, 109, 411–418. [Google Scholar] [CrossRef]
- Cai, Y.; Tang, L.; Chen, H.; Li, Y.; Liu, R.; Chen, J. Somatic embryogenesis in Rosa chinensis cv. ‘Old Blush’. Plant Cell Tiss. Org. Cult. 2022, 149, 645–656. [Google Scholar] [CrossRef]
- Mahmoud, I.M.A.; Hassanein, A.M.A. Essential factors for in vitro regeneration of rose and a protocol for plant regeneration from leaves. Hortic. Sci. 2018, 45, 83–91. [Google Scholar] [CrossRef]
- Harmon, D.D.; Touchell, D.H.; Ranney, T.G.; Da, K.; Liu, W. Tissue culture and regeneration of three rose cultivars. Horticulral Sci. 2022, 57, 1430–1435. [Google Scholar] [CrossRef]
- Samiei, L.; Pahnehkolayi, M.D.; Tehranifar, A.; Karimian, Z. Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. J. Genet. Eng. Biotechnol. 2021, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Xing, W.; Bao, M.; Qin, H.; Ning, G. Micropropagation of Rosa rugosa through axillary shoot proliferation. Acta Biol. Cracoviensia 2010, 52, 69. [Google Scholar] [CrossRef]
- Gao, L.P.; Bao, M.Z. Callus Induction and Plant Regeneration of Rosa hybrida ‘Samantha’. Acta Hortic. Sin. 2005, 32, 534–536. [Google Scholar]
- Bijalwan, P. Shilpa Plant Tissue Culture-A New Tool for Vegetable Improvement (Indian scenario): A Review. Agric. Rev. 2021, 42, 235–239. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose-a review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef]
- Lu, J.J.; Li, S.B.; Zhou, N.N.; Jian, H.Y.; Wang, Q.G.; Zhang, H.; Tang, K.X. Callus Induction and Plant Regeneration of Rosa wichuraiana ‘Basye’s thornless’. Plant Sci. J. 2014, 32, 139–147. [Google Scholar]
- Sheikh-Assadi, M.; Tari, N.G.; Naderi, R.; Fattahi, R. Exploring the impact of seasonal sampling, media phase, concentration and type of hormone on the micropropagation of dog rose (Rosa canina L.). Ornam. Plants 2023, 13, 267–282. [Google Scholar]
- Cui, G.R.; Ye, X.Y.; Liu, Y.C.; Xiao, M.; Liao, L.L.; Liu, Y. The Types and Concentrations of Hormone Influence the Rate of Shoot Propagation and Rooting of Petunia hybrida. Plant Sci. J. 2005, 23, 389–392. [Google Scholar]
- Islam, F.; Farooq, M.A.; Gill, R.A.; Wang, J.; Yang, C.; Ali, B.; Wang, G.X.; Zhou, W. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci. Rep. 2017, 7, 10443. [Google Scholar] [CrossRef] [PubMed]
- Bhoomsiri, C.; Masomboon, N. Multiple shoot induction and plant regeneration of Rosa damascena Mill. Silpakorn Univ. Int. 2003, 3, 229–239. [Google Scholar]
- Noodezh, H.M.; Moieni, A.; Baghizadeh, A. In vitro propagation of the Damask rose (Rosa damascena Mill.). Vitr. Cell. Dev. Biol. Plant 2012, 48, 530–538. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Hong, B.; Wang, H.Q.; Gao, J.P. High efficiency of in vitro micropropagation and regeneration for ground cover Rose ‘Royal Bassino’. Acta Hortic. Sinica. 2005, 32, 1065–1069. [Google Scholar]
- Yan, H.; Jiang, Y.; Huang, C.; Deng, J.; He, J.; Wang, X.; Bu, Z. The tissue culture and rapid regeneration of Rosa hybrida ‘Carola’. Chin. J. Trop. Crops 2016, 37, 1741–1746. [Google Scholar]
- Carelli, B.P.; Echeverrigaray, S. An improved system for the in vitro propagation of rose cultivars. Sci. Hortic. 2002, 92, 69–74. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rose damascena Mill. Dev. Biol. Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
- Kintzios, S.; Manos, C.; Makri, O. Somatic embryogenesis from mature leaves of rose (Rosa spp.). Plant Cell Rep. 1999, 18, 467–472. [Google Scholar] [CrossRef]
- Rout, G.R.; Debata, B.K.; Das, P. Somatic embryogenesis in callus cultures of Rosa hybrid L. cv. Landora. Plant Cell Tissue Organ. Cult. 1991, 27, 65–69. [Google Scholar] [CrossRef]
- Yi, X.; Chen, J.R.; Hu, B.W.; Chen, Y.B.; Li, Q.; Deng, Z.N.; Xiong, X.Y. Studies on Somatic Embryogenesis and Plant Regeneration in Rosa chinensis ‘Yueyuehong’. Acta Hortic. Sin. 2014, 41, 781–788. [Google Scholar]
- Marchant, R.; Davey, M.R.; Lucas, J.A.; Power, J. Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci. 1996, 120, 95–105. [Google Scholar] [CrossRef]
- Osternack, N.; Saare, S.K.; Preil, W.; Lieberei, R. Induction of somatic embryos, adventitious shoots and roots in hypocotyls tissue of Euphorbia pulcherrima Willd.ex Klotzsch: Comparative studies on embryogenic and organogenic competence. Ann. Appl. Biol. 1999, 7, 197–201. [Google Scholar]
- Wang, F.X.; Shang, G.D.; Wang, J.W. Towards a hierarchical gene regulatory network underlying somatic embryogenesis. Trends Plant Sci. 2022, 27, 1209–1217. [Google Scholar] [CrossRef]
- Hsia, C.; Korban, S.S. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tissue Organ. Cult. 1996, 44, 1–6. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, M.J.; Liu, J.R. Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis. Plant Biotechnol. Rep. 2009, 3, 341. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, S.C.; Liu, J.R. Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tissue Organ. Cult. 2003, 74, 61–66. [Google Scholar] [CrossRef]
- Yan, H.J.; Zhang, H.; Jian, H.Y.; Wang, Q.G.; Qiu, X.Q.; Zhang, T.; Tang, T.K. Preliminary study on callus induction and plant regeneration of Rosa chinensis ‘Slater’s crimson China. Southwest China J. Agric. Sci. 2012, 25, 247–251. [Google Scholar]
- Zhu, Z.F.; Zheng, M.Y.; Ma, Y.; Li, J.M.; KXL, D.L. Somatic Embryo Induction and Plantlet Regeneration of Rosa hybrida ‘Tineke’. Mol. Plant Breed. 2022, 1–9. [Google Scholar]
- Li, X.Q.; Krasnyanski, S.F.; Korban, S.S. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. Plant Physiol. 2002, 159, 313–319. [Google Scholar] [CrossRef]
- Murthy, B.N.S.; Murch, S.J.; Saxena, P.K. Thidiazuron: A potent regulator ofin vitro plant morphogenesis. Vitr. Cell. Dev. Biol.- Plant 1998, 34, 267. [Google Scholar] [CrossRef]
- Guo, B.; Abbasi, B.H.; Zeb, A.; Xu, L.L. Thidiazuron: A multi-dimensionalplant growth regulator. Afr. J. Biotechnol. 2011, 10, 8984–9000. [Google Scholar]
- Alsemaan, T. Micro-propagation of Damask rose (Rosa damascena Mill.) cv. Almarah. Int. J. Agric. Biol. 2013, 8, 172–177. [Google Scholar] [CrossRef]
- Mirshahi, H.; Mahdinezhad, N.; Soloki, M.; Samiei, L. Effect of plant growth adjuvants on direct regeneration of Mohammadi flower (Rosa damascena Mill.) using thin cell layering technique. Acta Sci. Pol.-Hortorum Cultus 2020, 19, 167–177. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy 2024, 14, 11–20. [Google Scholar] [CrossRef]
- Ambros, E.V.; Vasilyeva, O.Y.; Novikova, T.I. Effects of in vitro propagation on ontogeny of Rosa canina L. micropropagated plants as a promising rootstock for ornamental roses. Plant Cell Biotechnol. Mol. Biol. 2016, 17, 72–78. [Google Scholar]
- Rezanejad, F.; Abdirad, S.; Abarian, M. Comparison of shoot and root regeneration of miniature potted rose (Rosa × hybrida L.) and Damask rose (R. damascena Mill.) in microculture system. Acta Agric. Slov. 2023, 119, 1–10. [Google Scholar] [CrossRef]
- Nguyen, T.H.N.; Schulz, D.; Winkelmann, T.; Debener, T. Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep. 2017, 36, 1493–1505. [Google Scholar] [CrossRef]
- Pourhosseini, L.; Kermani, M.J.; Habashi, A.A.; Khalighi, A. Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue Organ Cult. 2013, 112, 101–108. [Google Scholar] [CrossRef]
- Duan, M.; Liu, J.; Zhao, Y.N.; Wang, X.F.; Li, L.Z.; Wang, S.Y.; Jia, R.D.; Zhao, X.; Kou, Y.P.; Su, K.R.; et al. Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’. Plants 2024, 13, 3553. [Google Scholar] [CrossRef]
- Li, D.; Kang, X.L.; Zhu, Z.F.; Ma, Y.; Haoran Guo, H.R.; Li, J.M.; Ding, C.Y. Plantlet regeneration via somatic embryogenesis and changes in endogenous hormone content of Rosa ‘John F. Kennedy’. Vitr. Cell. Dev. Biol.–Plant 2024, 60, 344–354. [Google Scholar]
- Vergne, P.; Maene, M.; Gabant, G.; Chauvet, A.; Debener, T.; Bendahmane, M. Somatic embryogenesis and transformation of the diploid Rosa chinensis cv ‘Old Blush’. Plant Cell Tissue Organ Cult. 2010, 100, 73–81. [Google Scholar] [CrossRef]
- Kim, W.S.; Oh, J.M.; Liu, J.R. Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol. Rep. 2009, 3, 199–203. [Google Scholar] [CrossRef]
- Estabrooks, T.; Browne, R.; Dong, Z. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesisin the rose cultivar ‘Livin Easy’ (Rosa sp.). Plant Cell Rep. 2007, 26, 153–160. [Google Scholar] [CrossRef]
Treatments | NaClO (%) | Immersion Time (min) |
---|---|---|
1 | 5 | 15 |
2 | 5 | 20 |
3 | 5 | 25 |
4 | 10 | 15 |
5 | 10 | 20 |
6 | 10 | 25 |
7 | 15 | 15 |
8 | 15 | 20 |
9 | 15 | 25 |
No. | Medium Composition |
---|---|
1 | MS + 1.0 mg∙L−1 6-BA + 0.01 mg∙L−1 NAA |
2 | MS + 0.5 mg∙L−1 6-BA + 0.01 mg∙L−1 NAA |
3 | MS + 1.0 mg∙L−1 6-BA + 0.01 mg∙L−1 NAA + 0.1 mg∙L−1 GA3 |
4 | MS + 2.0 mg∙L−1 6-BA + 0.1 mg∙L−1 IBA + 0.1 mg∙L−1 GA3 |
5 | MS + 0.5 mg∙L−1 6-BA + 0.004 mg∙L−1 NAA + 0.1 mg∙L−1 GA3 |
No. | Contamination Rate (%) | Mortality Rate (%) |
---|---|---|
1 | 75.56 ± 7.70 a | 4.45 ± 3.85 a |
2 | 60.00 ± 0.00 b | 2.22 ± 3.85 a |
3 | 60.00 ± 6.67 b | 0.00 ± 0.00 a |
4 | 37.78 ± 10.18 c | 8.89 ± 7.70 a |
5 | 15.55 ± 3.85 de | 2.22 ± 3.85 a |
6 | 24.45 ± 3.85 d | 4.45 ± 3.85 a |
7 | 6.67 ± 0.00 e | 2.22 ± 3.85 a |
8 | 8.89 ± 3.85 e | 0.00 ± 0.00 a |
9 | 8.89 ± 3.85 e | 0.00 ± 0.00 a |
No. | Medium Composition | Rooting Rate (%) | Average Rooting Number | Root Status |
---|---|---|---|---|
a | 1/2MS + 0.1 mg∙L−1 NAA | 95.55 ± 3.85 a | 24.09 ± 0.25 a | Dense, strong, well-developed and long |
b | 1/2MS + 0.5 mg∙L−1 NAA | 60.00 ± 6.67 b | 15.13 ± 0.54 c | Sparse, weak and short |
c | 1/2MS + 0.1 mg∙L−1 IBA | 48.88 ± 3.85 c | 16.35 ± 0.44 b | Sparse, weak and short |
d | 1/2MS + 0.5 mg∙L−1 IBA | 62.22 ± 3.85 b | 16.22 ± 0.39 b | Dense, slender and long |
2,4-D (mg∙L−1) | Induction Rate (%) | Callus Status |
---|---|---|
1.0 | 100 a | Brownish-yellow, small, hard texture |
2.0 | 100 a | Brownish-yellow, small, hard texture |
3.0 | 100 a | Yellow or pale yellow, medium size, soft texture |
4.0 | 100 a | Brownish-yellow, medium size, soft texture |
5.0 | 100 a | Yellow, loose, big, soft texture |
6.0 | 100 a | Yellow, loose, big, slight watery |
7.0 | 100 a | Yellow, loose, big, slight watery |
8.0 | 100 a | Yellow, loose, big, soft texture |
TDZ (mg∙L−1) | Shoots Differentiation Rate (%) | Number of Shoots Generated Per Explant |
---|---|---|
0.5 | 6.50 ± 1.31 b | 1.00 ± 0.00 a |
1.0 | 7.03 ± 1.19 b | 1.33 ± 0.58 a |
1.5 | 10.87 ± 1.54 a | 1.67 ± 0.58 a |
No. | Shoot Status | Average Shoot Length (cm) | Number of Leaves Per Shoot |
---|---|---|---|
1 | Maintain the original state | 0.23 ± 0.06 a | 0.00 ± 0.00 b |
2 | Maintain the original state | 0.20 ± 0.00 a | 0.00 ± 0.00 b |
3 | Maintain the original state | 0.20 ± 0.01 a | 0.00 ± 0.00 b |
4 | Change into hard callus tissue | 0.23 ± 0.06 a | 0.00 ± 0.00 b |
5 | Develop into strong, bright-green plantlets with the main stem | 0.53 ± 0.06 a | 2.67 ± 0.58 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, Q.; Li, R.; Tian, M.; Zhong, C.; Jiang, X.; Zhang, W. Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’. Agronomy 2025, 15, 1834. https://doi.org/10.3390/agronomy15081834
Zhang Y, Zhou Q, Li R, Tian M, Zhong C, Jiang X, Zhang W. Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’. Agronomy. 2025; 15(8):1834. https://doi.org/10.3390/agronomy15081834
Chicago/Turabian StyleZhang, Yuexin, Qin Zhou, Ruijie Li, Miao Tian, Changlong Zhong, Xiongbo Jiang, and Wei Zhang. 2025. "Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’" Agronomy 15, no. 8: 1834. https://doi.org/10.3390/agronomy15081834
APA StyleZhang, Y., Zhou, Q., Li, R., Tian, M., Zhong, C., Jiang, X., & Zhang, W. (2025). Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’. Agronomy, 15(8), 1834. https://doi.org/10.3390/agronomy15081834