Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,105)

Search Parameters:
Keywords = calculation theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 645 KB  
Article
Hydroxyl Radical Scavenging by Aucubin: A Mechanistic Study
by Kunzhe Jiang, Jingran Wang, Wang Yang, Ying Xiong, Meiling Chen, Qiang Zhou and Yanhong Wang
Antioxidants 2025, 14(11), 1342; https://doi.org/10.3390/antiox14111342 - 7 Nov 2025
Abstract
This study investigates the antioxidant properties of aucubin (AU), an iridoid compound, focusing on its ability to scavenge hydroxyl radicals (OH) through its hydroxyl functional groups. Gaussian software was employed to model and validate the underlying antioxidant reaction mechanisms. Three primary [...] Read more.
This study investigates the antioxidant properties of aucubin (AU), an iridoid compound, focusing on its ability to scavenge hydroxyl radicals (OH) through its hydroxyl functional groups. Gaussian software was employed to model and validate the underlying antioxidant reaction mechanisms. Three primary pathways were examined: hydrogen atom transfer (HAT), sequential electron transfer-proton transfer (SET-PT), and sequential proton loss–electron transfer (SPLET). All calculations were performed using the M06-2X functional within density functional theory (DFT) at the def2-TZVP level, incorporating Grimme’s D3 dispersion correction and the implicit solvation model based on solute electron density (SMD) for water. Various thermodynamic parameters were determined to analyze and compare the antioxidant reactions, including the O-H bond dissociation energy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), electron transfer enthalpy (ETE), and proton affinity (PA) of the hydroxy groups. The results indicated that the HAT mechanism is the dominant pathway in the scavenging of OH radicals by AU. The key active sites were identified as the 6-OH group in the aglycone structure and the 6′-OH group in the sugar moiety. Moreover, the polar aqueous environment promoted O-H bond homolysis through hydrogen bonding interactions, thereby enhancing the antioxidant activity, and the polar aqueous environment promoted O-H bond homolysis to enhance the antioxidant activity. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
19 pages, 3652 KB  
Article
Deciphering Shale Gas Production Dynamics: A Fractal Theory Approach
by Baolei Liu, Xinyi Zhang, Liang Zhao and Lingfeng Zhao
Fractal Fract. 2025, 9(11), 719; https://doi.org/10.3390/fractalfract9110719 - 7 Nov 2025
Abstract
Shale gas production dynamics display strong heterogeneity and nonlinearity, posing challenges to conventional analytical methods. This study applies fractal theory to analyze long-term production data from 178 global shale gas fields by calculating Hurst exponent (H) and fractal dimension (D). Results show 60.7% [...] Read more.
Shale gas production dynamics display strong heterogeneity and nonlinearity, posing challenges to conventional analytical methods. This study applies fractal theory to analyze long-term production data from 178 global shale gas fields by calculating Hurst exponent (H) and fractal dimension (D). Results show 60.7% of fields are suitable for fractal analysis, with H values of 0.64–0.92 and D values of 1.0–1.9, indicating significant long-term memory and structural complexity. Cluster analysis reveals two distinct production patterns: stable trend (13.0%) and fluctuating trend (87.0%). Key innovations include: (1) extending fractal theory from static reservoir characterization to dynamic production analysis; (2) establishing a fractal-based production classification system; and (3) defining applicability conditions for fractal analysis in shale gas evaluation. This study demonstrates fractal theory’s effectiveness as a quantitative tool for production dynamics analysis, EUR estimation, and development strategy optimization. Full article
Show Figures

Figure 1

28 pages, 1716 KB  
Article
Decision Making Under Uncertainty: A Z-Number-Based Regret Principle
by Ramiz Alekperov, Vugar Salahli and Rahib Imamguluyev
Mathematics 2025, 13(22), 3579; https://doi.org/10.3390/math13223579 - 7 Nov 2025
Abstract
Decision-making theory has developed over many decades at the intersection of economics, mathematics, psychology, and engineering. Its classical foundations include Bernoulli’s expected utility theory, von Neumann and Morgenstern’s rational choice theory, and the criteria proposed by Savage, Wald, Hurwicz, and others. However, in [...] Read more.
Decision-making theory has developed over many decades at the intersection of economics, mathematics, psychology, and engineering. Its classical foundations include Bernoulli’s expected utility theory, von Neumann and Morgenstern’s rational choice theory, and the criteria proposed by Savage, Wald, Hurwicz, and others. However, in real-world contexts, decisions are made under uncertainty, incompleteness, and unreliability of information, which classical approaches do not adequately address. To overcome these limitations, modern multi-criteria decision-making methods such as Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VlseKriterijumska Optimizacija I Kompromisno Resenje (Compromise solution approach) (VIKOR), and ELimination Et Choix Traduisant la REalité (Elimination and Choice Expressing Reality) (ELECTRE), as well as their fuzzy and Z-number extensions, are widely applied to the modeling and evaluation of complex systems. These Z-number extensions are based on the concept of Z-numbers introduced by Lotfi Zadeh in 2011 to formalize higher-order uncertainty. This study introduces the Z-Regret principle, which extends Savage’s regret criterion through the use of Z-numbers. Supported by Rafik Aliev’s mathematical justifications concerning arithmetic operations on Z-numbers, the model evaluates regret not only as a loss relative to the best alternative but also by incorporating the degree of confidence and reliability of this evaluation. Calculations for the selection of digital advertising platforms in terms of performance assessment under various scenarios demonstrate that the Z-Regret principle enables more stable and well-founded decision-making under uncertainty. Full article
13 pages, 2411 KB  
Article
Asymmetric Dimethylarginine Vibrational Spectroscopy Spectra and Density Functional Theory Model
by Luis Pablo Canul-Solis, Ma. del Carmen Rodríguez-Aranda, Emmanuel Rivera-Pérez, Alejandra Ortiz-Dosal, Edgar Guevara, Erick Osvaldo Martínez-Ruiz, Luis Carlos Ortiz-Dosal, Adán Reyes-Reyes and Eleazar Samuel Kolosovas-Machuca
Sensors 2025, 25(22), 6818; https://doi.org/10.3390/s25226818 - 7 Nov 2025
Abstract
NG, NG-dimethylarginine (ADMA) is an endogenous compound that acts as a competitive inhibitor of nitric oxide synthase (NOS), thereby reducing nitric oxide (NO) production and contributing to endothelial dysfunction. This dysfunction plays a pivotal role in the development of [...] Read more.
NG, NG-dimethylarginine (ADMA) is an endogenous compound that acts as a competitive inhibitor of nitric oxide synthase (NOS), thereby reducing nitric oxide (NO) production and contributing to endothelial dysfunction. This dysfunction plays a pivotal role in the development of various pathological conditions, including cardiovascular disease, chronic renal failure, and diabetes. The diminished bioavailability of NO is a critical factor in the progression of these disorders, and alterations in ADMA levels have emerged as significant predictors of cardiovascular events and mortality. In this study, we investigated the molecular characteristics of ADMA using a combined approach of Raman and Fourier Transform Infrared (FT-IR) spectroscopy, complemented by computational simulations with the GaussView 5.0.8 and Gaussian 09 software suite. Experimental Raman and FT-IR spectra were acquired and compared with simulated spectra generated through Density Functional Theory (DFT) calculations. This comparative analysis enabled precise vibrational band assignments and the identification of key molecular vibrational modes, providing valuable insights into ADMA’s structural and vibrational properties. These findings establish a comprehensive spectroscopic reference for ADMA, supporting its potential application as a biomarker in clinical diagnostics. Full article
(This article belongs to the Special Issue Recent Advances in Raman and IR Spectroscopy: Biology and Medicine)
Show Figures

Figure 1

21 pages, 4241 KB  
Article
Measuring Serotonin Binding to Its Receptors In Vitro via Charge Transfer to ANAP
by Olivia G. Brado, Aspen T. Hawkins, Adam D. Hill and Michael C. Puljung
Int. J. Mol. Sci. 2025, 26(22), 10815; https://doi.org/10.3390/ijms262210815 - 7 Nov 2025
Abstract
Serotonin (5-HT) is a vital intercellular messenger with diverse signaling functions throughout the human body. We have characterized and implemented a novel, in vitro fluorescence-based method of measuring 5-HT binding to gain a fuller understanding of the interactions between 5-HT and its receptors. [...] Read more.
Serotonin (5-HT) is a vital intercellular messenger with diverse signaling functions throughout the human body. We have characterized and implemented a novel, in vitro fluorescence-based method of measuring 5-HT binding to gain a fuller understanding of the interactions between 5-HT and its receptors. This method involves expression of 5-HT receptor proteins in cultured cells with the fluorescent, non-canonical amino acid l-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP) incorporated into the ligand binding site. ANAP fluorescence was quenched in solution by both 5-HT and dopamine. Time-resolved photoluminescence and transient absorption spectroscopy confirmed that ANAP quenching by 5-HT occurs via a charge-transfer process that recovers through back-electron transfer on the nanosecond timescale. Supported by density functional theory calculations, this process likely involved an ANAP reduction by 5-HT. To test this method on intact receptors in a cellular context, we expressed 5-HT3A receptors (5-HT-gated ion channels) in HEK293T cells with ANAP inserted co-translationally into the transmitter binding site. Fluorescently labeled 5-HT3A receptors were functional and activated by 5-HT, as assessed by whole-cell patch clamp. Addition of 5-HT caused a concentration-dependent quenching of fluorescence from ANAP-tagged channels in intact cells and unroofed plasma membranes, demonstrating the utility of this method for measuring 5-HT binding to its receptors. Collectively, these results delineate a technique for measuring transmitter binding that can be widely adopted to explore 5-HT binding not only to 5-HT3 receptors, but to any 5-HT receptor, transporter, or binding protein in heterologous expression systems. Full article
(This article belongs to the Special Issue Advances in Fluorescent Sensors)
Show Figures

Figure 1

24 pages, 6953 KB  
Article
In Vitro and In Silico Evaluation of the Pyrolysis of Polyethylene and Polypropylene Environmental Waste
by Joaquín Alejandro Hernández Fernández, Katherine Liset Ortiz Paternina, Jose Alfonso Prieto Palomo, Edgar Marquez and Maria Cecilia Ruiz
Polymers 2025, 17(22), 2968; https://doi.org/10.3390/polym17222968 - 7 Nov 2025
Abstract
Plastic pollution, driven by the durability and widespread use of polyolefins such as polypropylene (PP) and high-density polyethylene (HDPE), poses a formidable environmental challenge. To address this issue, we have developed an integrated multiscale framework that combines thermocatalytic experimentation, process-scale simulation, and molecular-level [...] Read more.
Plastic pollution, driven by the durability and widespread use of polyolefins such as polypropylene (PP) and high-density polyethylene (HDPE), poses a formidable environmental challenge. To address this issue, we have developed an integrated multiscale framework that combines thermocatalytic experimentation, process-scale simulation, and molecular-level modeling to optimize the catalytic pyrolysis of PP and HDPE waste. Under the identified optimal conditions (300 °C, 10 wt % HMOR zeolite), liquid-oil yields of 60.8% for PP and 87.3% for HDPE were achieved, accompanied by high energy densities (44.2 MJ/kg, RON 97.5 for PP; 43.7 MJ/kg, RON 115.2 for HDPE). These values significantly surpass those typically reported for uncatalyzed pyrolysis, demonstrating the efficacy of HMOR in directing product selectivity toward valuable liquids. Above 400 °C, the process undergoes a pronounced shift toward gas generation, with gas fractions exceeding 50 wt % by 441 °C, underscoring the critical influence of temperature on product distribution. Gas-phase analysis revealed that PP-derived syngas contains primarily methane (20%) and ethylene (19.5%), whereas HDPE-derived gas features propylene (1.9%) and hydrogen (1.5%), highlighting intrinsic differences in bond-scission pathways governed by polymer architectures. Aspen Plus process simulations, calibrated against experimental data, reliably predict product distributions with deviations below 20%, offering a rapid, cost-effective tool for reactor design and scale-up. Complementary density functional theory (DFT) calculations elucidate the temperature-dependent energetics of C–C bond cleavage and radical formation, revealing that system entropy increases sharply at 500–550 °C, favoring the generation of both liquid and gaseous intermediates. By directly correlating catalyst acidity, molecular reaction mechanisms, and process-scale performance, this study fills a critical gap in plastic-waste valorization research. The resulting predictive platform enables rational design of catalysts and operating conditions for circular economy applications, paving the way for scalable, efficient recovery of fuels and chemicals from mixed polyolefin waste. Full article
(This article belongs to the Special Issue Polymer Composites in Municipal Solid Waste Landfills)
Show Figures

Figure 1

15 pages, 2614 KB  
Article
Methylene Blue Photodegradation onto TiO2 Thin Films Sensitized with Curcumin: DFT and Experimental Study
by William Vallejo, Maria Meza, Freider Duran, Carlos Diaz-Uribe, Cesar Quiñones, Eduardo Schott and Ximena Zarate
Chemistry 2025, 7(6), 177; https://doi.org/10.3390/chemistry7060177 - 6 Nov 2025
Viewed by 42
Abstract
Titanium dioxide (TiO2) thin films sensitized with curcumin were fabricated to investigate the influence of sensitization on their spectroscopic, optical, and photocatalytic properties. TiO2 films were prepared using different curcumin concentrations and characterized by FTIR, UV–Vis, and diffuse reflectance spectroscopy [...] Read more.
Titanium dioxide (TiO2) thin films sensitized with curcumin were fabricated to investigate the influence of sensitization on their spectroscopic, optical, and photocatalytic properties. TiO2 films were prepared using different curcumin concentrations and characterized by FTIR, UV–Vis, and diffuse reflectance spectroscopy (DRS). The adsorption kinetics of curcumin on TiO2 were analyzed, and the photocatalytic performance was evaluated through methylene blue (MB) photodegradation under visible-light irradiation. FTIR spectra confirmed the successful anchoring of curcumin onto the TiO2 surface, while optical characterization revealed a significant enhancement in visible-light absorption. The band gap decreased from 3.2 eV (pure TiO2) to 1.8 eV (curcumin-sensitized TiO2). Furthermore, the curcumin adsorption onto semiconductor data fitted the pseudo-second-order kinetic model, yielding a maximum adsorption capacity of 12.0 mg·g−1. Density Functional Theory (DFT) calculations indicated that ligand-to-metal charge transfer (LMCT) transitions are responsible for the improved visible-light response. Photocatalytic tests demonstrated that all curcumin-sensitized TiO2 films were active under visible irradiation, confirming curcumin as an effective natural sensitizer for enhancing TiO2-based photocatalytic coatings. Full article
Show Figures

Figure 1

192 pages, 1598 KB  
Article
Calculus in Non-Integer-Dimensional Space: Tool for Fractal Physics
by Vasily E. Tarasov
Fractal Fract. 2025, 9(11), 714; https://doi.org/10.3390/fractalfract9110714 - 5 Nov 2025
Viewed by 78
Abstract
Integration in non-integer-dimensional spaces (NIDS) is actively used in quantum field theory, statistical physics, and fractal media physics. The integration over the entire momentum space with non-integer dimensions was first proposed by Wilson in 1973 for dimensional regularization in quantum field theory. However, [...] Read more.
Integration in non-integer-dimensional spaces (NIDS) is actively used in quantum field theory, statistical physics, and fractal media physics. The integration over the entire momentum space with non-integer dimensions was first proposed by Wilson in 1973 for dimensional regularization in quantum field theory. However, self-consistent calculus of integrals and derivatives in NIDS and the vector calculus in NIDS, including the fundamental theorems of these calculi, have not yet been explicitly formulated. The construction of precisely such self-consistent calculus is the purpose of this article. The integral and differential operators in NIDS are defined by using the generalization of the Wilson approach, product measure, and metric approaches. To derive the self-consistent formulation of the NIDS calculus, we proposed some principles of correspondence and self-consistency of NIDS integration and differentiation. In this paper, the basic properties of these operators are described and proved. It is proved that the proposed operators satisfy the NIDS generalizations of the first and second fundamental theorems of standard calculus; therefore, these NIDS operators form a calculus. The NIDS derivative satisfies the standard Leibniz rule; therefore, these derivatives are integer-order operators. The calculation of the NIDS integral over the ball region in NIDS gives the well-known equation of the volume of a non-integer dimension ball with arbitrary positive dimension. The volume, surface, and line integrals in D-dimensional spaces are defined, and basic properties are described. The NIDS generalization of the standard vector differential operators (gradient, divergence, and curl) and integral operators (the line and surface integrals of vector fields) are proposed. The NIDS generalizations of the standard gradient theorem, the divergence theorem (the Gauss–Ostrogradsky theorem), and the Stokes theorem are proved. Some basic elements of the calculus of differential forms in NIDS are also proposed. The proposed NIDS calculus can be used, for example, to describe fractal media and the fractal distribution of matter in the framework of continuum models by using the concept of the density of states. Full article
30 pages, 978 KB  
Article
Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity
by Roman Czapla, Piotr Drygaś, Simon Gluzman, Tomasz Ligocki and Vladimir Mityushev
Materials 2025, 18(21), 5041; https://doi.org/10.3390/ma18215041 - 5 Nov 2025
Viewed by 105
Abstract
We suggest a novel strategy in the theory of elastic plane composites. The macroscopic properties are quantified, and an analytical–numerical algorithm to derive expressions for the effective constants is designed. The effective elastic constants of dispersed random composites are given by new analytical [...] Read more.
We suggest a novel strategy in the theory of elastic plane composites. The macroscopic properties are quantified, and an analytical–numerical algorithm to derive expressions for the effective constants is designed. The effective elastic constants of dispersed random composites are given by new analytical and approximate formulas where the dependence on the location of inclusions is explicitly shown in symbolic form. This essentially extends the results of previous numerical simulations for a fixed set of material constants and fixed locations of inclusions. This paper extends the analysis from Part I, which addressed dispersed random conducting composites, to the two-dimensional elastic composites. Hill’s concept of Representative Volume Element (RVE), traditionally used in elastic composites, is revised. It is rigorously demonstrated that the RVE must be a fundamental domain of the plane torus, for instance, a periodicity parallelogram, since other shapes of RVE may lead to incorrect values of the effective constants. The effective tensors of the elasticity theory are decomposed into geometrical and physical parts, represented by structural sums and material constants of the components. Novel computational methodology based on such decomposition is applied to a two-phase isotropic composite with non-overlapping circular inclusions embedded in an elastic matrix. For the first time, it is demonstrated explicitly how the effective tensors depend on the geometric probabilistic distributions of inclusions and the computational protocols involved. Analytical polynomial formulas for the effective shear modulus for the moderate concentration of inclusions are transformed using the resummation methods into practical expressions valid for all concentrations of inclusions. The critical index for the effective shear modulus is calculated from the polynomials derived for the modulus. Full article
Show Figures

Graphical abstract

26 pages, 3775 KB  
Article
Expanding the Scope: Modified Fortescue Theory for Frequency Unbalance Resolution in Control Strategies
by Karim Mansouri, Brahim Metoui, Cristian Nichita, Amr Yousef and Ezzeddine Touti
Mathematics 2025, 13(21), 3548; https://doi.org/10.3390/math13213548 - 5 Nov 2025
Viewed by 74
Abstract
To analyze unbalanced electrical systems, the mathematical technique “symmetrical components method” developed by Charles LeGeyt Fortescue in the early 20th century has been very successful in this field. By decomposing three-phase systems into three symmetrical components: positive sequence, negative sequence, and zero sequence, [...] Read more.
To analyze unbalanced electrical systems, the mathematical technique “symmetrical components method” developed by Charles LeGeyt Fortescue in the early 20th century has been very successful in this field. By decomposing three-phase systems into three symmetrical components: positive sequence, negative sequence, and zero sequence, the Fortescue theory provides an important analyzing method. It allows for the calculation of these symmetrical components, which helps in understanding and addressing issues related to unbalance in amplitude within electrical systems. This theory deals only with amplitude unbalances in electrical systems to analyze and solve those problems. Since this technique is limited only to amplitude unbalance, our objective is to propose a modified Fortescue theory, which will resolve frequency unbalance problems in electrical systems. The new balanced components, at the conclusion of this new theory, will be used as references to be assigned in the adopted control strategies in a subsequent research paper. Full article
Show Figures

Figure 1

3 pages, 288 KB  
Correction
Correction: Shahbazi et al. Effective Low-Energy Hamiltonians and Unconventional Landau-Level Spectrum of Monolayer C3N. Nanomaterials 2022, 12, 4375
by Mohsen Shahbazi, Jamal Davoodi, Arash Boochani, Hadi Khanjani and Andor Kormányos
Nanomaterials 2025, 15(21), 1678; https://doi.org/10.3390/nano15211678 - 5 Nov 2025
Viewed by 58
Abstract
In our published paper [1], we have identified misprints and errors in the values of the k·p model parameters, which were obtained by fitting the results of the density function theory (DFT) band structure calculations [...] Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 4

16 pages, 1901 KB  
Article
Risk Assessment Framework for Structural Failures of Polar Ship Under Ice Loads
by Kai Sun, Xiaodong Chen, Shunying Ji and Haitian Yang
J. Mar. Sci. Eng. 2025, 13(11), 2099; https://doi.org/10.3390/jmse13112099 - 4 Nov 2025
Viewed by 130
Abstract
For polar ships, navigation in ice-covered regions can lead to high risk to structural safety. To study the structural risk induced by ice loads, a risk assessment framework is proposed based on a probabilistic analysis. The fatigue failure probability is derived with the [...] Read more.
For polar ships, navigation in ice-covered regions can lead to high risk to structural safety. To study the structural risk induced by ice loads, a risk assessment framework is proposed based on a probabilistic analysis. The fatigue failure probability is derived with the first-order second-moment (FOSM) method. Typical ice load cases are extracted as a joint probability distribution of ice thickness and ship speed, based on shipboard measurements. Equivalent fatigue stresses for each case are calculated using a coupled discrete element method (DEM) and finite element method (FEM), and fatigue failure probabilities are obtained via linear cumulative damage theory. The ultimate strength failure probability is derived from the reliability theory. The probabilistic distribution of load-carrying capacity for the bow structure, determined by the moment estimation method, is used as the structural resistance, while the ice load distribution identified from shipboard monitoring is treated as the external load. Considering both the likelihood and consequence of failure, a risk matrix is constructed to assess structural failure risk. Inspection and maintenance intervals are then proposed according to the assessed risk levels. This approach offers a quantitative basis for structural risk management, supporting safe navigation and efficient maintenance planning for polar ships. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3718 KB  
Article
Study on the Instability Mechanisms and Collapse Pressure of Wellbores in Fractured Formations Based on the Multi-Weak-Plane Strength Criterion
by Kecheng Liu, Jiangang Shi, Tao Ren, Kanizati, Weiju Wang and Jingpeng Wang
Processes 2025, 13(11), 3542; https://doi.org/10.3390/pr13113542 - 4 Nov 2025
Viewed by 156
Abstract
To address the issue of wellbore instability during drilling in fractured formations, this study systematically investigates the influence mechanisms of fracture geometry and strength parameters on wellbore stability by constructing a multi-weak plane strength criterion and a thermo-hydro-chemical coupling model. Based on Jæger’s [...] Read more.
To address the issue of wellbore instability during drilling in fractured formations, this study systematically investigates the influence mechanisms of fracture geometry and strength parameters on wellbore stability by constructing a multi-weak plane strength criterion and a thermo-hydro-chemical coupling model. Based on Jæger’s single weak plane criterion, a multi-weak plane strength criterion considering the synergistic effects of multiple fracture groups is established. By integrating Boit’s effective stress theory, an analytical solution for the stress field around a wellbore in fractured formations has been derived. A method for calculating collapse pressure and predicting instability zones is also proposed, utilizing the Newton–Raphson iterative algorithm. The results demonstrate that fracture systems markedly alter the anisotropic characteristics of wellbore stress. While the collapse pressure contour in intact formations exhibits bilateral symmetry (25.5–30 MPa), in formations with four fractures, the pressure increases to 29–37 MPa and the symmetry is lost. Furthermore, the instability zone in vertical wells evolves from a “crescent-shaped” pattern in homogeneous formations to a “quadrilateral-shaped” expansion. Notably, the instability area in horizontal wells is significantly smaller than in vertical wells. These outcomes offer theoretical guidance for optimizing the drilling fluid density window and well trajectory design in fractured formations. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

13 pages, 671 KB  
Review
Doping of Magnéli Phase—New Direction in Pollutant Degradation and Electrochemistry
by Vanja Vojnović, Maja Ranković, Anka Jevremović, Nataša R. Mijailović, Bojana Nedić Vasiljević, Maja Milojević-Rakić, Danica Bajuk-Bogdanović and Nemanja Gavrilov
Molecules 2025, 30(21), 4282; https://doi.org/10.3390/molecules30214282 - 4 Nov 2025
Viewed by 302
Abstract
This review summarizes the recent developments in titanium suboxide (TSO) doping and the application of doped materials in pollutant degradation and electrochemistry. Doping is mainly limited to transition and rare-earth metals, with some exceptions, of similar ionic radii and charge, that can replace [...] Read more.
This review summarizes the recent developments in titanium suboxide (TSO) doping and the application of doped materials in pollutant degradation and electrochemistry. Doping is mainly limited to transition and rare-earth metals, with some exceptions, of similar ionic radii and charge, that can replace Ti ions in TSO without too much disturbance to the lattice. Consequently, doping is limited to below 10 at%, which predominantly induces oxygen vacancy formation. Doping mechanisms are weighted, and their effect on conductivity, stability, and catalytic activity is overviewed. High-temperature H2 reduction of TiO2 is still the dominant preparation method, with carbothermal reduction and Ti reduction gaining ground due to safety and energy concerns. Doping predominantly increases the conductivity 2–5 times, while the stability can be both improved or worsened, depending on the size and charge of the doping ion. Electrochemical oxidation, at positive overpotentials, of per- and polyfluoroalkyl substances (PFAS), antibiotics, and other water pollutants, is the main avenue of application. Doping almost exclusively leads to complete selected pollutant degradation and improvement of the pristine TSO, which is summarized in detail. New niche applications of peroxide, hydrogen, and chlorine production are also viable on doped TSO and are touched upon. Complementing experimental results are theoretical calculations, and we give an overview of density functional theory (DFT) results of transition metal-doped TSOs, identifying active centers, degradation trends, and potential new doping candidates. Full article
Show Figures

Graphical abstract

28 pages, 2438 KB  
Review
MOF-Derived Catalytic Interfaces for Low-Temperature Chemiresistive VOC Sensing in Complex Backgrounds
by Lu Zhang, Shichao Zhao, Jiangwei Zhu and Li Fu
Chemosensors 2025, 13(11), 386; https://doi.org/10.3390/chemosensors13110386 - 3 Nov 2025
Viewed by 349
Abstract
The detection of volatile organic compounds (VOCs) at low operating temperatures is critical for public health, environmental monitoring, and industrial safety, yet it remains a significant challenge for conventional sensor technologies. Metal-organic frameworks (MOFs) have emerged as highly versatile precursors for creating advanced [...] Read more.
The detection of volatile organic compounds (VOCs) at low operating temperatures is critical for public health, environmental monitoring, and industrial safety, yet it remains a significant challenge for conventional sensor technologies. Metal-organic frameworks (MOFs) have emerged as highly versatile precursors for creating advanced sensing materials. This review critically examines the transformation of MOFs into functional catalytic interfaces for low-temperature chemiresistive VOC sensing. We survey the key synthetic strategies, with a focus on controlled pyrolysis, that enable the conversion of insulating MOF precursors into semiconducting derivatives with tailored porosity, morphology, and catalytically active sites. This review establishes the crucial synthesis-structure-performance relationships that govern sensing behavior, analyzing how factors like calcination temperature and precursor composition dictate the final material’s properties. We delve into the underlying chemiresistive sensing mechanisms, supported by evidence from advanced characterization techniques such as in situ DRIFTS and density functional theory (DFT) calculations, which elucidate the role of oxygen vacancies and heterojunctions in enhancing low-temperature catalytic activity. A central focus is placed on the persistent challenges of achieving high selectivity and robust performance in complex, real-world environments. We critically evaluate and compare strategies to mitigate interference from confounding gases and ambient humidity, including intrinsic material design and extrinsic system-level solutions like sensor arrays coupled with machine learning. Finally, this review synthesizes the current state of the art, identifies key bottlenecks related to stability and scalability, and provides a forward-looking perspective on emerging frontiers, including novel device architectures and computational co-design, to guide the future development of practical MOF-derived VOC sensors. Full article
(This article belongs to the Special Issue Detection of Volatile Organic Compounds in Complex Mixtures)
Show Figures

Figure 1

Back to TopTop