Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity
Abstract
1. Introduction
2. Dispersed Random Composite
3. Elastic Problems for a Doubly Periodic Composite
Principles of Homogenization
- The boundary value problem is stated for a doubly periodic domain .
- The effective elastic constants in macroscopically isotropic composites are determined by averaging the local fields over Q.
4. Hill’s Conception
- Linear displacement:
- Uniform traction:
5. Asymptotic Formulas for the Effective Elastic Constants
6. Concept of Investigations Following aRVE Theory
6.1. General Scheme
- Computation of structural sums.
- Computation of effective elastic constants through structural sums.
- Application of resummation to truncated power series.
6.2. Simulations of Dispersed Random Composites
6.2.1. Variant R
6.2.2. Variant T
- Calculate pairwise Euclidean distances between all points;
- Locate the closest pair of points using the implemented algorithm;
- Activate cleaning when ;
- Replace the proximate points with their geometric center;
- The procedure is repeated until all pairs of points satisfy the distance criterion .
6.2.3. Variant P
6.3. Results of Simulations
7. Critical Index for the Effective Shear Modulus of Composite with Hard Inclusions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mityushev, V.; Drygaś, P.; Gluzman, S.; Nauryzbayev, N.; Nurtazina, K. Computational Strategy for Analyzing Effective Properties of Random Composites—Part I: Conductivity. Appl. Sci. 2025, 15, 3861. [Google Scholar] [CrossRef]
- Bakhvalov, N.S.; Panasenko, G. Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 36. [Google Scholar]
- Marchenko, V.; Khruslov, E. Homogenization of Partial Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bensoussan, A.; Lions, J.L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; American Mathematical Society: Providence, RI, USA, 2011; Volume 374. [Google Scholar]
- Jikov, V.; Kozlov, S.; Oleinik, O. Homogenization of Differential Operators and Integral Functionals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rayleigh, L. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1892, 34, 481–502. [Google Scholar] [CrossRef]
- Natanzon, V. On stresses in a tensioned plate with holes located in the chess order. Mat. Sb. 1935, 42, 617–636. [Google Scholar]
- Filshtinskii, L. Problems of thermal conduction and thermoelasticity for a plane weakened by a double periodic array of equal circular holes. In Thermal Stresses in Elements of Constructions; Academy of Sciences USSR: Moscow, Russia, 1964; pp. 10–14. [Google Scholar]
- Grigolyuk, E.I.; Filshtinskii, L. Perforated Plates and Shells; Nauka: Moscow, Russia, 1970. [Google Scholar]
- Mityushev, V.; Andrianov, I.; Gluzman, S. LA Filshtinsky’s contribution to Applied Mathematics and Mechanics of Solids. In Mechanics and Physics of Structured Media; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–40. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873; Volume 1. [Google Scholar]
- Gluzman, V.S.; Mityushev, V.; Nawalaniec, W. Computational Analysis of Structured Media; Academic Press Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Mityushev, V.; Nawalaniec, W.; Kycia, R.; Rylko, N. Introduction to Mathematical Modeling and Computer Simulations, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2025. [Google Scholar]
- Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11, 357–372. [Google Scholar] [CrossRef]
- Hill, R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 1965, 13, 213–222. [Google Scholar] [CrossRef]
- Huet, C. Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 1990, 38, 813–841. [Google Scholar] [CrossRef]
- Mityushev, V. Effective properties of two-dimensional dispersed composites. Part II. Revision of self-consistent methods. Comput. Math. Appl. 2022, 121, 74–84. [Google Scholar] [CrossRef]
- Zohdi, T.I.; Wriggers, P. An Introduction to Computational Micromechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Barbero, E.J. Finite Element Analysis of Composite Materials Using Abaqus®; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Madej, Ł. Development of the Modelling Strategy for the Strain Localization Simulation Based on the Digital Material Representation; AGH University of Science and Technology Press: Kraków, Poland, 2010. [Google Scholar]
- Czapla, R.; Nawalaniec, W.; Mityushev, V. Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions. Comput. Mater. Sci. 2012, 63, 118–126. [Google Scholar] [CrossRef]
- Kurtyka, P.; Rylko, N.; Tokarski, T.; Wójcicka, A.; Pietras, A. Cast aluminium matrix composites modified with using FSP process-Changing of the structure and mechanical properties. Compos. Struct. 2015, 133, 959–967. [Google Scholar] [CrossRef]
- Kurtyka, P.; Rylko, N. Quantitative analysis of the particles distributions in reinforced composites. Compos. Struct. 2017, 182, 412–419. [Google Scholar] [CrossRef]
- Andrianov, I.V.; Awrejcewicz, J.; Danishevskyy, V.V. Asymptotical Mechanics of Composites; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Grigolyuk, E.I.; Fil’shtinskij, L. Periodic Piecewise Homogeneous Elastic Structures; Nauka: Moscow, Russia, 1992. [Google Scholar]
- Helsing, J. An integral equation method for elastostatics of periodic composites. J. Mech. Phys. Solids 1995, 43, 815–828. [Google Scholar] [CrossRef]
- Beran, M. Statistical Continuum Theories. Monographs in Statistical Physics and Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1968; Volume 9. [Google Scholar]
- Kröner, E. Statistical Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 1972; Volume 92. [Google Scholar]
- Torquato, S. Random heterogeneous materials: Microstructure and macroscopic properties. Appl. Mech. Rev. 2002, 55, B62–B63. [Google Scholar] [CrossRef]
- Cohen, I.; Bergman, D.J. Effective elastic properties of periodic composite medium. J. Mech. Phys. Solids 2003, 51, 1433–1457. [Google Scholar] [CrossRef]
- Younes, R.; Hallal, A.; Fardoun, F.; Chehade, F.H. Comparative review study on elastic properties modeling for unidirectional composite materials. Compos. Their Prop. 2012, 17, 391–408. [Google Scholar]
- Shan, M.; Zhao, L.; Ye, J. A novel micromechanics-model-based probabilistic analysis method for the elastic properties of unidirectional CFRP composites. Materials 2022, 15, 5090. [Google Scholar] [CrossRef]
- Drygaś, P.; Gluzman, S.; Mityushev, V.; Nawalaniec, W. Applied Analysis of Composite Media: Analytical and Computational Results for Materials Scientists and Engineers; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar]
- Eshelby, J.D. The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 252, 561–569. [Google Scholar]
- Nemat-Nasser, S.; Iwakuma, T.; Hejazi, M. On composites with periodic structure. Mech. Mater. 1982, 1, 239–267. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Luciano, R.; Barbero, E. Formulas for the stiffness of composites with periodic microstructure. Int. J. Solids Struct. 1994, 31, 2933–2944. [Google Scholar] [CrossRef]
- Andrianov, I.; Awrejcewicz, J.; Starushenko, G. Asymptotic models and transport properties of densely packed, high-contrast fibre composites. Part I: Square lattice of circular inclusions. Compos. Struct. 2017, 179, 617–627. [Google Scholar] [CrossRef]
- Andrianov, I.; Awrejcewicz, J. Asymptotic Methods for Engineers; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Andrianov, I.; Awrejcewicz, J.; Starushenko, G. Approximate Models of Mechanics of Composites: An Asymptotic Approach; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Muskhelishvili, N. Some Basic Problems of the Mathematical Theory of Elasticity; Noordhoff Groningen: Groningen, The Netherlands, 1953; Volume 15. [Google Scholar]
- Lekhnitskij, S. Theory of the Elasticity of Anisotropic Bodies; Mir Publishers: Moscow, Russia, 1981. [Google Scholar]
- Cherkaev, E.; Cherkaev, A. Principal compliance and robust optimal design. J. Elast. 2003, 72, 71–98. [Google Scholar] [CrossRef]
- Boddeti, N.; Tang, Y.; Maute, K.; Rosen, D.W.; Dunn, M.L. Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites. Sci. Rep. 2020, 10, 16507. [Google Scholar] [CrossRef]
- Etri, H.E.; Korkmaz, M.E.; Gupta, M.K.; Gunay, M.; Xu, J. A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. Int. J. Adv. Manuf. Technol. 2022, 123, 2965–2991. [Google Scholar] [CrossRef]
- Puttegowda, M.; Yashas Gowda, T.G.; Rangappa, S.M.; Siengchin, S. Applications of Composite Materials in Engineering; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Pytlarz, M.; Wojnicki, K.; Pilanc, P.; Kaminska, B.; Crimi, A. Deep learning glioma grading with the tumor microenvironment analysis protocol for comprehensive learning, discovering, and quantifying microenvironmental features. J. Imaging Inform. Med. 2024, 37, 1711–1727. [Google Scholar] [CrossRef]
- Ganguly, S.; Ray, D.; Das, P.; Maity, P.P.; Mondal, S.; Aswal, V.; Dhara, S.; Das, N.C. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason. Sonochem. 2018, 42, 212–227. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Z.; Yi, J.; Hu, X.; Guo, C. The synergistic effect of κ-carrageenan and l-lysine on the 3D printability of yellow flesh peach gels: The importance of material elasticity in the printing process. Int. J. Biol. Macromol. 2024, 254, 127920. [Google Scholar] [CrossRef] [PubMed]
- Mityushev, V. Representative cell in mechanics of composites and generalized Eisenstein–Rayleigh sums. Complex Var. Elliptic Equ. 2006, 51, 1033–1045. [Google Scholar] [CrossRef]
- Telega, J. Stochastic homogenization: Convexity and nonconvexity. In Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials; Springer: Berlin/Heidelberg, Germany, 2004; pp. 305–347. [Google Scholar]
- Vannucci, P. Anisotropic Elasticity; Springer Nature: Singapore, 2018. [Google Scholar]
- McPhedran, R.; McKenzie, D. The conductivity of lattices of spheres I. The simple cubic lattice. Proc. R. Soc. Lond. A Math. Phys. Sci. 1978, 359, 45–63. [Google Scholar]
- McKenzie, D.; McPhedran, R.; Derrick, G. The conductivity of lattices of spheres-ii. the body centred and face centred cubic lattices. Proc. R. Soc. Lond. A Math. Phys. Sci. 1978, 362, 211–232. [Google Scholar]
- Mityushev, V.; Drygas, P. Effective properties of fibrous composites and cluster convergence. Multiscale Model. Simul. 2019, 17, 696–715. [Google Scholar] [CrossRef]
- Filshtinskii, L.; Kurshin, L. Determination of the averaged elastic modulus of isotropic plane weaken by a double periodic array of equal circular holes. Mech. Eng. 1961, 6, 10–14. [Google Scholar]
- Ostoja-Starzewski, M. (Cracow University of Technology, Krakow, Poland). Personal communication, 2 April 2025.
- Mityushev, V.; Rylko, N. Effective properties of two-dimensional dispersed composites. Part I. Schwarz’s alternating method. Comput. Math. Appl. 2022, 111, 50–60. [Google Scholar] [CrossRef]
- Mityushev, V.; Rylko, N. Optimal distribution of the nonoverlapping conducting disks. Multiscale Model. Simul. 2012, 10, 180–190. [Google Scholar] [CrossRef]
- Rylko, N.; Stawiarz, M.; Kurtyka, P.; Mityushev, V. Study of anisotropy in polydispersed 2D micro and nano-composites by Elbow and K-Means clustering methods. Acta Mater. 2024, 276, 120116. [Google Scholar] [CrossRef]
- Barczak, K.; Hetmaniok, E.; Kita, J.; Warycha, J. Anisotropy Coefficient in 2D Polydisperse Model of Composite Structures; European Council for Modelling and Simulation: London, UK, 2024; pp. 280–285. [Google Scholar] [CrossRef]
- Hashin, Z. On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 1965, 13, 119–134. [Google Scholar] [CrossRef]
- Berlyand, L.; Kolpakov, A. Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite. Arch. Ration. Mech. Anal. 2001, 159, 179–227. [Google Scholar] [CrossRef]
- Nawalaniec, W.; Necka, K.; Mityushev, V. Effective conductivity of densely packed disks and energy of graphs. Mathematics 2020, 8, 2161. [Google Scholar] [CrossRef]
- Mityushev, V.; Gric, T.; Kycia, R.; Rylko, N. Anisotropy of Metamaterials: Beyond Conventional Paradigms; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Gluzman, S. Iterative Borel summation with self-similar iterated roots. Symmetry 2022, 14, 2094. [Google Scholar] [CrossRef]
- Gluzman, S. Borel Summation Can Be Controlled by Critical Indices. Symmetry 2024, 16, 1438. [Google Scholar] [CrossRef]
- Rylko, N.; Kurtyka, P.; Afanasieva, O.; Gluzman, S.; Olejnik, E.; Wojcik, A.; Maziarz, W. Windows Washing method of multiscale analysis of the in-situ nano-composites. Int. J. Eng. Sci. 2022, 176, 103699. [Google Scholar] [CrossRef]
- Szymanska, K.; Rylko, N. Structural Investigation of clouds. In Proceedings of the 38th ECMS International Conference on Modelling and Simulation, Kraków, Poland, 4–7 June 2024; pp. 316–320. [Google Scholar]
- Weil, A. Elliptic Functions According to Eisenstein and Kronecker; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; Volume 88. [Google Scholar]
- Akhiezer, N. Elements of the Theory of Elliptic Functions; AMS, Translations of Mathematical Monographs: Providence, RI, USA, 1990. [Google Scholar]






| Parameter | Minimum | Maximum | Mean | Std Dev |
|---|---|---|---|---|
| Initial point count | 273 | 450 | 336.5 | 32.8 |
| Final point count | 75 | 115 | 92.7 | 8.9 |
| Point reduction | 72.5% | 74.4% | 72.4% | 2.1% |
| Final minimum distance | 0.01224 | 0.01402 | 0.01257 | 0.15 |
| Achieved concentration (f) | 0.316 | 0.511 | 0.405 | 0.038 |
| s | R Protocol | P Protocol | T Protocol |
|---|---|---|---|
| Minimal Difference (87) | 1.50628 | 1.43399 | 1.39844 |
| Minimal Sensitivity Difference (88) | 1.25551 | 1.29169 | 1.26844 |
| Average, | Average, | Average, | Average, | |
|---|---|---|---|---|
| 1.99315 | 2.00103 | 2.00228 | 2.02171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czapla, R.; Drygaś, P.; Gluzman, S.; Ligocki, T.; Mityushev, V. Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity. Materials 2025, 18, 5041. https://doi.org/10.3390/ma18215041
Czapla R, Drygaś P, Gluzman S, Ligocki T, Mityushev V. Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity. Materials. 2025; 18(21):5041. https://doi.org/10.3390/ma18215041
Chicago/Turabian StyleCzapla, Roman, Piotr Drygaś, Simon Gluzman, Tomasz Ligocki, and Vladimir Mityushev. 2025. "Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity" Materials 18, no. 21: 5041. https://doi.org/10.3390/ma18215041
APA StyleCzapla, R., Drygaś, P., Gluzman, S., Ligocki, T., & Mityushev, V. (2025). Computational Strategy for Analyzing Effective Properties of Random Composites—Part II: Elasticity. Materials, 18(21), 5041. https://doi.org/10.3390/ma18215041

